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PREFACE

This is a tract on some topics in Fourier analysis of finitely and
infinitely many variables and on some topics in the theory of pro-
bubility and the connection between the two is a very intimate one
an the whaole.

Although drafted in part earlicr, more than half of the tract was
actually written while the author was visiting, February--August O
1933, the Statistical Laboratory at the University of Caliibm@’}f
Berkeley, of which Dr Jerzy Neyman is the Director, and a(th st

%
%

delightful and profitable visit it was, '\‘~§’
Special thanks arc due to Dr Loéve for listening {E’a}iently to
expoundings of half-ready results, and to Mrs Julia' B ﬁ)aleav&, also

of the Laboratory, for preparing the typed ’gs]\,y of the entire
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CHAPTER 1

APPROXIMATIONS

1.1. Approximation of functions at points

In ordinary Eneclidean space K2 (£, ..., &),

—waf<en, F=1,..k

N

¢~ ¢

. . . . 2 AN
im any dimension k=1, the ordinary Lebesgue measnre clg cHib

. dE;, will usnally be dencted by dwg, A function f(€), .. ,‘Hfa'wﬂl
alqn hc« written briefly az f(&) or f(£,}, and we will also put

|§|=§1+...+§ﬁ 12, »"\
We take a family of functions p \\;
{Kpy, . 60 \ (1.1.1)

also called ‘kernels’, subject to the followingassumptions. The index R
ranges over 0< R <o and has contﬁiixoub and oceasionally only

integer values. For each @,,‘Jgﬂgﬁj;% Qgﬁé}esd &rgllkvbcqcrue integrahle

over i, 50 thai the 1ntwra]:s Ny

[ Kﬂgﬁ?v@ [E | Kalf)| duy

PR o g
exist, and we have () J KyE)dog=1 (1.1.2)
NG Fx
for all B, and\‘;.\"o f [ K (&) | dog 2 K, (1.1.8)
By

with K,, ﬁlﬁepcndent of B; and, what iz decisive, for each § >0, no

matter how small, wo have
AN
\
lim f | K (&) dve=0. (1.1.4)
fm J 2|28
We note that for Ki(£,)= 0, (1.1.2) implies (L.1.3) with K,=1.
Starting from an intcgrable function K(£,,...,£,) with

~

K(gli‘ Iy ) d'?/é- = 1

J Eg

if wo put Kk, ... £ =B K(RE,, ..., RE), (1.1.5)

I Ela



2 APPROXIMATIONS

then this is a family as just deseribed, since by the change of
variables BE,-»£;, j=1,..., k, we obtain

f Kylg)dvy= [ K dvg=1,

J. | K R(En) dﬁg:J. | K(£) | dve=K,,

Er Er

f lKRtgﬂd'Ug‘f | K(E,) | dog, N
|Elzd |&| =R

!\
and for fixed 8> 0 the point set {| £ | = B8} converges to th&olnptx set
as B—oo, Sometimes s statement will bo intended p:ﬂy for sueh
a special family of kernels, as will be indicated by thTa & onltext.

¥or a measurable funetion f{z)=f(z,, ..., ;) m»li}. we Introduce, if
definable, the approximating fanctions

ali)= j et Gkt ) ds (110
i N\
and since (1.1.2) implies )

\-\.’\\Fﬂ (}er:hkngg&B&’g'g ins Ex) dﬁf,

wo obtain  ox(e)—f69= | (flo—E) 1) Kal®)doy

N/

and our first statoment is as follows:
Tarosed V1, If f(z) is bounded in E,

xo

O f) <, 117
Ne | L
tken\ —=fl@), R—w
AN
"\ vt every point x ab which flx) is continuous  Also, { if f(x) i continuous in

an open set A, then the convergence is wuniform in every com poct subset A,
Proof. We have

|53@) — flo )15L |fo—E)—f(e) || Kl | v,

= +j =I(B,x)+ I(R, x).
JIEI<6 HET B, &)+ 1R, )

Now, PR, %)< ls?lxpa |flo—&)—fl2) | . K,,



APPROXIMATIONGS 3

and by continuity of f{x) at x this is small for & sufficiently small.
However, for § fixed {(gmall) we have

LR G[S] (=B | Ka e

o

and by {1.1.7) this is & 2M'J | Kx(£)! d%ﬁg,\\"hi(ﬁh is small for large
HED

R by explicit assumption (L.1.4}, q.c.d.
The global requirement (1.1.7) was only needed for obtaining %)

N
lim [ |fle—&)|.| Krl(£)|dvg=0, ~\ (1°1.8)
Al ..\ 3

and it can be relaxed if we correspondingly sighten thﬁ\a‘s‘:umptlonb
on Kp(§). For any measurable set 4 in E, we sauvntroduce the

L (A}ynorm, pz1, .g;
520 _
t=sop ([ 1-5 )" (1.L9)
wEEE Vo A e\ /
and for 4 = &, this simply is o\
f] %ktﬁ({],l r a)};"m g.in

Also, it 4 is the zet
Tk:-,\?_ffg\gﬁ%, j=1,...k (1.1.10

and if f(&,..... &, s (multi) -periodic with period 1 in cach variahle,
then the L (T LJanofm is the L-norm of f{z) over a fundamental
domain of peue(jlmi;\» Now, it fo]lowa, from Lhc Holder incquality

"Q\‘ 1w L
“‘:’HT&Q{@ dvg ! g (J T 1 5’(5} |pd3"§) (.ka 1qd1"g) ’

thmg! 1“f\, for 4 given K g(£), (1.1.8) holds for every funetion for which
3

| fla—E&) | dpg <o, (1.1.11)

A

sup
xE g o
then it alzo holds for every function with finite L (£} or L (T, }-norm.
Now, (1.1.11) means that | f(x)| becomes bounded after having been
averaged over a T -neighbourhood of each point, and for such an f{x)
the integral

J; f(&) K(g;) dv
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is definable, whenevor we have
S sup | K{fy+my, ..., & 4my ) | <o, (1.1.12)
(m) €V

the summation extending over all latticc points (mey, ..., m g}, w770,

Next, (1,1.12) holds in particular if we have for all £e &),

. [ "
1K(gl,...,§:;)|§i—_i_-|—’g|;;_;f) (I,l.{".)\j
for some C> 0, no matter how large, and some p >0, no matter Fow
small. Also, if we form the special family (1.1.5), then the estimate
O
C R y
| K4E) | < H—R}.""_p] g_t’”“_l“ .“'( N
.. PR B RV
implies | Kx(©)] o 1@ )
for |£)= 4, Bz 1, and this secures relation (\]\}“ 8) under the assump-
tion (1,1.13). We do not claim that the me}e condition (1.1.32) would
secwre (1.1.8), but it could be shown that the condition
w ™
222  smp WNK(E,..,5) | <o, 1.1.14
ﬁw.diﬂgql@bym}y.o(rg a0 ( )
which falls between (]_.Ll?)"s:ﬂd (1.1.13) would already suffice, and
henco the following thedrem:

THEOREM 1.1‘2.@»& Jomily of the form (1.1.5), if the kernel K(Z)
satisfies (L113)pgr bnly (1.1.14), then theorem 1.1.1 also applics if,
globally, f(x) has it findte norm L (B} or only L(T).

If we put\. 1 for ZinT,,

LEo SO T

-
Z:\':w 10 fOI' g ot in 5-”3;, (.1‘1.1.])

O 1 [
t\h*ill Suan (&) = 2,?@‘]
\"\ ) dnd in particular for the simple exponential

X(a; .6) — em2rra'{a,m),

)
_f(:r1+§1,...,mk%-gk)dvg, {1.1.16)

—k had

(wxy=onay+ .. o, (1.1.17)
. . ?‘: i
it in X 2). T #n

1A o (1.1.1%)

The k_ernel {1.1.15) is a product kernel, in the sense that we have

K(gp b= Ko(gj) ree Kﬂ(gk)y
where K%£) is a kernel in B,
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Anothoer product kernel is the (nonperiodic) Fejer kernel

ﬁ (qm-ﬂg’) (1.1.19)

je1 ”gg
which, however, although it satisfies (1.1.12), does not satisfy (1.1.14)
and thus could not be used in theorom 2. With a kernel K°(§) we may
also form the multi-index kernel

I{(_R)(gll' Jgir) I{U El) K%;;(gk):

and most statements would be vulid if By, ..., R, tend to <o inde-,
pendently of cach other, but we will not pursue this possibility.J N
Of paramount importance is the Gaussian kernel \ W
o 11.1.20)
\
which in addition to being a product kernel is also,’"zg}ltit-hetically,
a radial funcltion, meaning that there iz a function® () in 0 Su <o,

—mE +§i}Ee—-nl§lz=

such that INY .
sich the KEN=H(|E]). K ;.\ (1.1.21)
We will take as known the formnla ¢ ‘t v/
J B—ﬂaE—Z?r\Eo::Gﬁ&“: e=m, (1.1.22)
L . _%WW.de‘gdifbral‘y,org,jn
Whl(’,h. 11:[1p]_le.-3 a—n{:a.lz'lR2J=R'E N :e'_frlﬂi|§f2_{,2ﬂ€(m,g]d1;§’ (11‘23)
A

and this time we obtain ,fo:i:;}he function (1.1.17) the appreximation

\ § PN
) (1.1.24)
For any ra-dial ]ééyﬁ'el (1.1.21}) it is profitable to introduce in

\"leR(m)ZJ Flo+8) H(R | £|) Redog
Fr
polar co@ﬁi‘nates

‘“\, E=ty, 0=i=|{]<om, 7it+..+9i=1,
s Which case the volame element dv, is the product of #-1d¢ with the

ol lement de ” a _
volume element duw, on Sy =1, (1.1.25)

_ O 7p(ER)
the total volume of §,_; being wy,_, = —-— . Wo then obtain

Rae)
salo) = | 0 RO B

- w;‘\_l[ £, (}i{) H(t) 14, (1.1.26)
=N :
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1

where g)=
Falt) e s

Flay F 80y, ooes Ep -+ 075) diry (1.1.27)

is the spherical average of our function at distance ¢ from the given
point z. By Fubini’s theorem, f,(f) exists for almost all ¢, and we are
always permitted to put f,{0)=f(x,), and a glance at the term
I(R; #yin tho proof to theorem 1.1.1 leads to the following conc: Jusion:

Tyeorzy 1.1.3. In theorems 1,11 and 1.1.2, of K(£) is a AT
function, then locally it suffices to assume that the spherical apuge
FolB) (0} as £>0, which is a weaker assumplion than c:-rm!mffrff;
proper, ~\

For k=2 we have w,=2r and o\ 3

»~\
f ®;+ ¢ cos f, @+ sin 1‘))0‘0
NG
However, for k=1 we have oy=2 and fmik‘l[f (w8 +flz—t)], and
radiality means evenness, K{—£)=K{&NH For k=1, a function is even
if it is invariant with respect to the {then only nontrivial} orthogondl
transformation £'= — £ which leavea the origin fixed. Now, for £z 2,
radiality means mvarhgg’e W&Bl}all‘((‘s;msg; itp the entire group of such
orthogonal transfom’l&tlons and (1) was an average over this group.
However, if K(£,) is mxr:mant with respect to a subgroup only, then
the funetion fix4- )\ma} be averaged correspondingly. Thus if
K, ... ) is even%th respect to cach £; separately, then it suffices
to agsume in 13h\eorems 1.1.7 and 1.1.2 that tho averaged function
\"\:\ 21L f(ﬂ +g]:- Jxkigk)
N

q‘ha,]_'c,be conbinnous at §={.

\'I‘ut-nmﬂr for a moment to the smoothing operation (1.1.16) we note

\ ‘that by iterafing it {or by some such procedure) we obtain the
following result:

@ compact set is o limil, muformly in Ek, of suchlike functwns each of
which s of class OV (that is, has continuous partial derivatives of order
=7 for any fixed r.

The conclusion also holds more precisely in the class O, but of
this we will not make use in primary contexts,
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1.2. Translation functions

In E, we take a family & of functions {f(x)} with the following
properties: (i) it is a group of addition, meaning that if f, g€ 5 then
f—gedF; (i} it is invariant with regard to translations, that is, if
flzye F, and if for any u= (¥, ..., #;) in E,, we define

frixy=fla + vy, oo 2y o),

N
then f*(z) ¢.%; and (iil} it is endowed with a norm | f|| such that
10}=0, 0=|fi<en, (121‘3
==L g2l ot ligls (T 2.2)
and, what is important, this norm is invariant, that is, ¢ \ \
IF =11 . 3, (1.2.3)
With any fe# we associate a certain nonergdtwe function in
Et (g, ..., 1), namely, the function S
f“‘-ff'a:‘ (1.2.4)
and we call it the transiation funczmn of f. 1t has the following
properties. First, wwwfrilgl'ailébr ary.org.in (1.2.5)

by (1.2.1). Next, due to Q

e -f||<|fum CFl= il EF =21 1=,
we havo ) <1r( S M=2Ffi (1.2.6)
Next, we havo L G5 g = | (fr =) I =1 £l

the last by iQJ\E."\'ﬂ }, and on putting ¢ = —u we obtain

'\\ - Ti{ =) =7(u). (1.2.7)
\L,xt\”ﬁeha\*e |fere—f i< s —fo i+ | fe—FE
Sl enos Tt 2} <7, () +74(0), (12.8)

and finally for f, ge.# we have
fergi—f—gli2|f*=Ff +lg —gll
and henee Tooglt) =7.(0) 7,60, (1.2.9)

Now, (1.2.8} implies 74+ ¢)—7u) S71,(v}, (L.2.1Y
hut we alse have

—r(0) STl — {4 0) =T ) = T —u—2),
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and if herein we replace —u by %+ v we obtain
=7} Sr{utv) —71-(u), (1.2.14
Combining (1.2.10) and (1.2.11} and also using (1.2.5) we obtain
| Tu+ o) =7 {u) | Sy =1,{v)~T,40)
and hence the following conclusion:
Lewwma 1.2.1. I a translation function is continuons ot the oriy et
ig uniformly continuous throughout.

Next, by the use of {1.2.6)and {1.2.8) we now obtain by a faly\i'iiar
reagsoning the following conclusion: O

N/
Levma 1.2.2, If 7 is o dense (in norm) subset of F&ind if 7.0} is
condinuous in u for f in F o it is conbinuous for fin F
But if # is a normed vector space, more can b"qi:}t-u,ted.
Lemma 1.2.3, If F is a normed vector space & f 1y {u) is continius

wh o for @ sef F, whose linear co-m-bénaéior@ q}e dense in F, then i 8
continuous for all of F. O
This follows from

TC]_J‘]_T’..""G??_ f?b(%} = l 61 f:?-}’:l{u) +...+ | Cy ,l Tf,a(ﬂ')’
Xow, for all ﬁxﬁtg“m@%éﬂdiiﬁﬁ‘@%y.org.in
L€, <by, 5=1,...k (1.2.12)
we infroduce the ",c}%;a’cteristic funetions’

D o[l O zinle

} 3
0 for znotinl (1.2.13)

\\& ab
and it is @basic fact of the Lebesgue theory that their linear com-

binatidns are for every 1 Sp <oo dense in the £, (H,)-space with the
nori\

A (Lklf@]%g)”".

<\: “On the other hand, we have
Lip
Tw{xt,(’u.) = (.f I &}M,{g-f- u) — wub(g) | ;ndgs)
Ex N

" (IEk ()~ @ (£ F"dvg)l{w,

and it is easy to verify that this tends to 0 as [

an 0. Similarly, if we
introduce for the periodic funetions

‘ﬁxl + My ., Zp+ mh:) :f(xp - )
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the L,(7%)-norm
1ip - 1ip
([, )= (] 1reropas)
Ty Tx
then Linear combinations of periodic functions of the form (1.2.13})
are again dense in norm. Henes the following conclusion:

Tueorea 1.2.1. For functions in L, (K,) and (periodic) functions
[in LT, 1Sp<ce, the translation functions are (bounded) ang \
confinuwons.

We note that the general norm as defined by formula (3, J\‘J\)“ 15
invariant with respeet to translations, but we do not at all clalm that
every funetion with a finite norm of this kind has a oont;nuohs T Au).
However, if we take any sot of functions {% "} each of\@“chﬁh is bounded
and nniformly continnous, and then form theif3wallest Banach
closure with respect to the norm for a set A of finite Lebe%gue Measnro,
then their translation funections arc COHt]I\bl}S If we choose for

{# '} the simple exponentials
6"':{)._1_ By A L mf‘)

and for A the set T, then the ﬁma]]ebt closure iz composed of the

almost periodic funetiony of th& t%?‘i) nofl class LD, to which we will
rary.org.tn

sometimes refer 11101deni&11v

S
1.3. Approximation i{i.;’form
We will now state, a-\uert-a-in proposition first in a general version
Leuristically and ghe in a specific version precigely,
A S

THEOREM ],.é..l (heuristic). If TAw) 18 continuous then the approxi-
mating f
1\ Sﬁ.(‘”):fE fle—&) Kp(é)dug {1.3.1)
¥

com&'qeq to fix) in norm: ['gag—f1| =0 as B —oc.
“Réusoning. For a finite discrete sum we have

HL??R(‘}L T"+£ .f IEFZJ |. m|'!|f£m_f!|

el

= E }YH" ! Tf(gm}a

and this suggests for (1.3.1) the estu‘nate

|8R"_f||‘“’|‘f (&— g)—f(x))Kjr(g)di’gH

<[ upegt K0 o= | 7@ Ka®) e
v B iy
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But the last term is the value of
f i@ —E)—7(x)). | K p(E) ] dog
Ex

for = 0, and for bounded continuous 74{£) this tends to 0 as =0
as in theorem 1.1.1,
Assume now specifically that /(z} is in Ly(E}). The fanetion
H, £) =fla—£) K n(€) N

is measurable in (x,£), and we have (AN

[ ([ 1o e an)an, o
Er V) Ex / A& 3

:'f (| K&}, f [flz—8)| d?'w}é\e;
By, Er »
zf | Kal€) e |71 = AR,

Er '\ &

and since the last torm is finite, it i‘olloﬁva’:by Fubini’s theorein that
the integral (1.8.1) exists for almost gl @ and is un integrable function
m z. This being so, we now obtu-igj:,’ v

[ It LT D o). e i),
A M\ 7, e

L S J

a-nd t-hL? "’o}iiﬁe"‘rigorously. This argument also works for {periodic)
fe LI(N,.;f we replaco one of the two symbols &, by T, and thus we
obtgip the fo]_lowing theorem, at first for p=1:

. :"i[‘H_EORE?k[ 1‘.3.2. 1If f(z) belongs to Lo(Ey) or to periodic or Stepanoff
\ ‘g.zl‘most pe?.'wdac LT, then the integral (1.3.1) exists Jor almost all =,
s @ function of the same class with

lise 1S 171 K,

and we have it [ g, - |l =
g@l.su fli=0. (1.3.2)

o

Torp>1itig necessary to apply the Holder Minkowski inequality

(.f A(j e 5)‘*"”)94%)1{”;‘[ B( j A, §)”d@$)mdu§,



APPROXIMATIONS II

for H{z, ) being lirst | flx—£)]. JKR g)] and then

| fle—&) =S} ].| Kx(8) |
and B=F, and A=F,or T,.

1.4. Vector-valued functions

Theorem 1.1 on convergence at a point aud theoremm 1.3.2 on con-
vergence in strong average can be brought together by a third, ®
theorem embracing them both. A

We define in B, a function f{x;) whose values f are not Ordinary
comp]ex numbers but more genet’a]l\ eloments of a Ban&oh space
B the norm of which will be denoted by || ;. For flx) wa employ the
concept of (strong) measurability and (strong) integrability as intro-
duced by this author (the so-called Bochner inteatal), and if fz) is

bounded in norm | fla) 1< M, @€ By (0 N4 (1.4.1)

then for numerical Kz(§;) in Ly(5,) there ;uﬂt the approximafing
fanetions

5pla) = J f{,-eg N (£) o (1.4.2)
EJL

as functions again with vzHueb 3 ﬁﬂlklt% ryorg.in

I8ae)—F(e) fnfx E=Fie) || Knl®) | dog

\\
& ffl’a nga

and thus coni;-uilmt-} in norm at a point x,
7N\
N hm il — &) ~fl) (1.4.3)

& E|—=0

impHes convergence in norm
. J

\ ) hm Ji ) — i) (1.4.4)

and hence the foﬂowing conclusion:

TauoreM 1.4.1. Theorems 1.1.1, L.1.2 and 1.1.3 also epply io
functions fix) with values in @ Banach space £,

Wenow takein Bp: (g, ..., ¥z) afamily F sginsection 1.2, assuming
that it is a Banach space and an element f(y) in # for which the trans.
lation function 7{z) is continuous. If now we denote by fix) what in
1-2 we denoted by f2, then this f{z) is bounded and continuous in
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norm snd thus falls under theorem 1.4.1. In a certain formal sense we
can write in (1.4.2)

saly+2) =J flre—€) K@) 5,

where sy{y+) is 8z(x), and if our Banach norm is L (F,) or the
periodic or almost periodic J,(Ty) then this is rigorously so, furalmost
all v, for any given fixed =z, as can be realized by assuming fira that
flw) is a finitely valued function as in section 1.2 and then pasanmbo
a limit in norm, But if this is so then relation (1.4.4), il ‘np[:lu Q at
@ = 0, is simply ||sx(y) —fly) |0 in the sense of theorem PR, nd
thus theorem 1.3.2 appears likewise subsumed under f}l.i}t,)l:‘m H4.1.

Now, the (heuristic) theorem 1.3.1 has also a (hLurM 1(} fOnVeTse
to the effect that if s,(z) converges in norm to fl) 'qu 7,(n) i con-
tinuous. But in the specific version in which Wa Wil establish this
rigorously, we will not start out from a poinfastetion at all but from
a (more general) sot function, prove for itd\ weak® approximation by
sg{x), and then show that if this appréximation is also a strong one
then the set function is the mdeﬁmt.e integral of a point function, and
T¢(#) is continuons.

ww w.dbr auhbrary org.in

1.5. Additive set functions
We dencte by V(E R}ﬂxe vector apace of sot functions
O L) =FrA) 4+ iPAA)
which are deﬁ{wd and o-additivo on the o-field of (ordinary) Borel
setgin & L,.{hg morm being the supremum
N e SARIER]

ffll‘ i partitions into disjoint sets. If F{4) is real and =0 Lhen

\ 5' F||=F(Ey), avd the subset of such clements in ¥ will be denoted
" by V-, Any Fin ¥V can be written as

F(dy=F|(4)~ Fy{4)+iF(4)—i¥ (A), (1.a.1)
where Fy,Fy, Fy, Fie V4, and there exists a GeV* suoh that

| PLA) | £G(A4) for all A, Also, | F 5| G {=6(H,). Now, among all
such G(4) there exists a ‘smallest’ one, which we will sometimes
denote by F{4) and call the ‘absolute value’ of F{d), and it is
characterized by ’ ‘.

1F l<F A}, LF lI|_—"|'|}-';brll
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We will say that Fiszeroon aset B if F(#2) =0, and this is equivalent
10 stating that F(B,)=0 for any subset 3, of B. Also if we are given
a g-additive set function F{4) only for the subsets of a set 4", then
there is another set function in ¥ which ceincides with F for 4 C A4°,
and is zero on £, — A"

If f(xye Ly(E}) then F(A)zJ faydn, (15.3)

P

dofines an element of ¥, the function f(z) being defined up to sets of
measure zero. We will call F(4) an (indefinite) integral of f(z) d,ntk
fix) a ‘derivative’ of F(d). If F is the integral of f(x) then F 13&;he
integral of | f{)|. The clements in ¥ which are mtearals are & closed
subsetof Fand con&.tftute by themselvesa Banach space w, h,u,h we will
denote by AC(E ), theletters A Ostanding for %bsolutel;«@ntmuoub
and the meaning of this is that F in ¥ belongs tor40. if and only if
F{4,)=0 whenever «{d,)=0. AN

Any Fe ¥+ defines a bounded Lebesgue mes sdre on the Borel sets
of E,. and every hounded Baire function b(xJ} 1s integrable, and the
integral will be denoted somewhat amb)lgue:ud} by

\J‘\ﬁg.%’ggﬂg}‘)éry,org,m (1.5.4)
the employment of the symboNT( ( ;) instead of F(4) being somewhat
arbitrary on the whole. Fet\any Fe V' we take any decomposition
(L.5.1} and define (1.5. c:\{)y

fbdﬁ!]~_ fb (},F,,-i-i.’ bdF, _1:| bdF, (15.5)

and this mtecrral}s iniguely defined and has many customary properties.
Ir PEA(S\t en (1.5.4) has the same value as the ordinary integral

[ a, f,(x Vdu,, and the familiar estimates
B

S fbjdv |

/N
can be generalized to

\\;..
bdﬁ’!gﬁb|.]ci’.{f’|gsup|b(x}|.’ |AF |,

011/ dvessup | bi) V| £} e,
! Ji

where | dF(z) | =dF(z), with F(A) being the absolute value of F{4),
and we also have

f |dF | =
o Fr

AF=FE)=|TF.

o B
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The following properties are of considerable import.anc»("

Lenna 151, If Ty, FyeV, then Fi=F,, that 1s Frid 1y for
all 4, whenever

J e{x) dF(x) zf ey d Fofx} (1.5.8)
; B

for every continuous cfx) which vanishes outside n eompnct sel. and {by
femma 1.1.1) it suffices to assume that ¢{x) belongs Lo class ¥, [or some
Jizwed 7. A\

Furthermore, if we are given F in V and @ measurable funcilon [
which is infegrable (with regard to ordinary measure} over Ny rb?.-f\pact

set and if we have « \
J o) dF () fﬂ(rfom
i .

ok # ;
A\

for all such clz), then Fe AC and fy(x) is its de-rwahry;
Next, if F, F, in ¥ have the same value h{a‘ll ‘octants’

I —o<cu<ay, j= KO (1.5.7)

then ¥ =F, On denoting F{I,} by Flay...,a;) we obtain a certain

point function F(z,) which is reprebentautwe of ¥4y, and it is this

interpretation of the symbol Fmy), which may be read into the for nmula

{1.5.4). We will simplflw&%mwﬁ%d‘we note, what is much used
in the theory of probability, that a function K(z;) is in P+ifand only if

F(a-:,_,...,?k)éz"{yl,...,yk) for =y, .., 2. (1.5.8)

5
and also N (— Dbt Ply, +bw, —y,)) 20,
A
A%
AO Fly—0,...,ap—0)=Flx,, ..., 23), (1.5.9)
\V Lim Py, .,2)=0 if #;+—00 {1.5.10)
fw\mcle index §, and
AN P4, ..., +ooy=!| Fll<ow. {1.5.11)

\ )| We will now take two elements F, & in ¥ and make stalenients
BJbOL.lt them which we will explicitly discuss only if they are bothin ¥+,
re‘lymg on & decomposition (1.5.1) for both of them if they arc not.
.It we interpret F(4) as & measure in space F, and G(B) as a measire
in a space EY, then on the Borel sets of the product space

E&k.:-EiXE;’; {1.5.12)
there is a product measure #(C') such that

{4 x B)=F(4).G(B). (1.5.13)
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The funetions #;=§&; +7;,j=1, ...,k arc Baire functions in £,;. and
thus with any octant (1.5.7) in I, there is associable the Baire set

O —oc<Eibm<a, =1,k (1.5.14)

in F,,. If now we put H{a,, .... a;)=#(C,), then this defines a point
fanction in H{z;} in ¥ as proviously described; and thus there is an
element IF{C) in V such that for every bounded Baire function b{zx;)
i £, wo have

-~

f b:u)d,H(;z:)—_-[ | b{E+q) d F(E)d, Gn), (1.54}5&'
Eg B Eg

N
the second integral being taken aus a double integral 01, ql‘-\peated
integral, indifferently. Hence the following statement; ¢
Tuuoresm 1.5.1. With any two elements F, G i ‘m.& there s
associable a third, H =F 5 ( (their convolulion) such ikat {1.5.15) holds
The properties \\

FyGeGsxF and () %T}%Fﬂ-—)‘—'" (F, % Fy)

are obvious, but others will be stated iorma]lv although taken as
known.

ot W Jibrary.org.in
Tanornm 1.5.2, For H=1F %! we%me JOrE:

H{4 gz}J FlAd—nd,Gm {1.5.16)
EN/ | E
Jor every set 4. Y L\ :
I Fhasa fle.;ri-v{zmj%;e.f then H has a derivative b, and if f is a bounded
Baire function then

2 =] fe-na,c).

If a,lZ t?;:r ¢ functions have derivatives, then
AN

o= ste=maman

) 2

for almost all .

DeriNitioN 1.5.1, A scquence of elements {F,}in V will be called
Bernoulli convergent if their norms are jointly bounded and if there is
an elemnent ¥ in V' such that

lim [ e(z)dF {x) = [ elx) dF(w) (1.5.17)
A=~ ) Eg

Ex

for every bounded continuous fx),
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It will be called weakly convergent it (1.5.17) holds lor cvery con-
tinuous of#) which vanishes outside a compact set, and (hy leinma
1.1.1} it may be even assumed that ¢z} belongs to C47 for o lixed 7,

Certain decisive propertics will be taken as known, wiwl they are
being stated as they will be needed,

Lumma 1.5.2, (i) Any infintte sequence {F 3 in V(K with FI1SM
contuins an infintle subsequence which 13 weakly concergent, ond if the
entire sequence i3 not weakly convergent then it confuins hro wdlly
convergent subsequences whase limats are not identicedly equal, O\

{it) For F, e VH(E,), if {F,} is weakly convergent o I, thya N

lim F(E)zF(E), A7 (1.5.18)

N
= pe

and equality Rolds if and only if the weuk mm;wf;e}ic:e is S rnoulli
convergence. ’

(i) If {F,} is weakly convergent and if all B, Jure zero on an vpen sel
Ay then the limit iz also zero on A, (¥

k ’ N\
(v} If{F.} vs Bernoulli convergont apdsf a fusiction y(z; .r) isbounded
and continuous for (z,, ...,q;) in Eyan(x,y, ..., xp) in £, then the Limdt

relafions R
gi\g;s,)[ﬁ%%@@%ra@f;kx(a; 2)dfty)  (1.5.19)

kolds uniformly in everg@l:mpact sef { o | S oy, 0oty < o,

(¥) If By F weakly, and [ F, | < M, then (L.5.19) holds for every

continuous efx) ‘u}}w i zero al infiwity’ | that is, Jorwhich lim of) =%
’ [a|—ren

Al this wilbbe needed later on, and for the present we arve stating

a theorem Oivapproximation,

TE%(‘“){{EM L53. () If FeV(E,), and K R(E)} is as before, then
O
N S;:(A)=J FlA &) K () do, (1.5.20)
.\: : Ex )
“4s Bernoulli convergent fo {4y, as B o,

(1) Sp(4) is absolutely continuous, and if K ' Rt
Junction then its derivative is , I8 s comtinons

se)= [ Kio-tap@= Kygare—g. as2

P M
(1} If Sp(d) converges in norm to F{dy,

Ji ' F O
R——lralc [ Sz—F =0, (1.5.22)

then F is absolutely continuons,
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(iv) Frml[‘ly if K(&) 48 as in theorem 1, ]..., then the convergence of
splx)ata pointxisa Zocal propesty, meaning thal if ¥ is 2er0 in a neigh-
borhood of x then sp{x} =0 af the point,

Proof. We have

S|Sha) S| %1804,-8 KA d

v v
gJ IF | KylE) | dogs O\
Er N o
and thus Sy V< F UK, (528)
and for a bounded Baire function &{x) we have ¢ “}2,

-

b(x}d-mSK(x}=[ ([ b(x)da,ﬁ(;v—g)") Fatd)du, (1.5.24)
< Ex B By N\

by Fubini's theorem. Now, the inside intcgral\éaﬁ also be written as

-

JE ba+E)d, m; ﬁ(«S),

and if b(x} is continuous then f{ E}l'a (boundcd) and conkinuoug, and
" PIE) Kp(E) dr; therelore"ed éﬁ}@\}‘%‘ﬂ{m x) d, F{x), which
Er F},

PI'OTCD part (i} of the theaaem Part {ii) is taken dir cctly from theorem

1.5.2, and part (iii) lthw from the lacl that 4C iz a closed snbset

of ¥; and part (W} \,Ltm that under the assumptions of theorem

1.1.2 we have

1‘~\hm ‘
oo 0 £120

| K} |- [deFlx—§) =0
\1.
for F .Q'&V (E}), which can be easily verified.
Nexb, for Fin V' we introduce the translated element
PAQY
”'\; ~/ FyAdy=F(d 4+,
and the translation function
Hu)= || F»~F,
which, if F({4) has a derivative f{x) is our previous {u).
TurorEM [.5.4. For Fin V(E,L), if 75(u) 78 continuous, then Fe AC.
Proof. We have
I,[ Sp(d,) - F(4,)] éfE I F(4,- )= F(4,)|. | Kp(E) | dey,
X :

2 EHA
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and henee [8z—F| & {E 75(E) . | Kgl&) | doy
v g

and for 7,{£) continuous this tends to 0 as K »oc. Now apuly part
(iii} of theorem 1.5.3. .

Theorem 1.5.4 also holds for a periodie fanciion #e F'iT)) which
we will introduce next, but we want to point ont that il also holds on
compact groups ¢, as we have shown clsewhere; that i, 10 we talfe
o o-additive set fanction F(4) on the Borel sets in € and ind il e
the right transtation function 77(1) = | F{A) — F{rd} =y, t b B ).
ig absolutely continuous with regard to the Haar 1;10;1%11::\\}}4.-1} if
{and only if ) 7¥ () is continuons in . An extension to no ngni%;} mtiative
locally compact gronps would be of some interesi. 2 '

Turthermore, if a function fix) in {—oc,oc) is intt@‘n.ble OVir OVOrY
finite interval and if )

1 jT+a [~T+u PAS
Bm | +J -'?';RE):U,
T (TJT =T l{(-kl ¢

— o0 << 0, then the function \ Y

ry= T o [ flo ) — e |
www dbraeulibeary Org.1n
if finite, has all the propexlies of a translation function, and it would
be of some interest fo{stidy the iroplications of the assumption that
7{u) is continuong #ithout being identically zero, and the study ouyht
to be extended,ﬁé,more general means of the form

A/
£ ) N T
2O tim _1 j Lfle+u)—fle) | do,
' T 2] g
say,\q}s;’ﬁ.

ad
&

..(Vb. Periodic additive set functions

\‘;

Feriodic set functions F(4), Jike all other periodic fanctions, are to
bo thought of as being first introduced on the multitorus Ty -3 S, < }
viewed as a compact space, and they may then be transplanted onta
the entire X, as covering space of 7, by periodic repetition

FlAd+m)=F4), m=(my,...,m,),

80 that they may be used in the formulas of theorem 1.5.3 which, a3
in the case of pomt functions, we wish to retain as they are, with
integrations in them extending over the entire E K-
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If now wo introduce the symbo! V(T},) to designate the periodic
r-additivo set functions (we will also employ the symbels AC(TY),
V+(T,), ete.), then we can first of all state as follows:

TaroreM 1.6.1. Theorem 1.5.3 remains lilerally in force for F e V{(T}).
srovided Bernoulli convergence is now defined by

lim | @) dF,(z)= J efx) dF () (1.6.1)
o o Tk Tx
for every continuous periodic function c(x). O\
On the torus, due to its compactness, there is no difference bct.ween
weak and Bemoulh convergenee, and for instance any ‘wquenee in
V(1) for which F,(T;) < M containg a subscquence for whish .61
holds. Thus, in this respect, the sindy of joint distr Lbuthﬂ i unctlom
of random positions on a closed wire is somewhat lostvsophisticated
than for positions on the open infinite wire, on thh the theory of
statistics operates traditionally. R
If f(x) is periodic then for the integral AN/

=9R(x}=f fla iJKR( )daa (1.6.2)

J Eg
wo can write formally WWW'de’athfaFY-Ofg-m

» fle—E). }%Qg?\du—tm) [ka('r—- } Kyl +m)deg,

(e Tatim) v

and thus we have gﬁ{.r = ’ fle—E) K8 dee, (1.6.3)
{ 7y
\¥/
where we h*i.ve'l\uia By =% Ky {E+m). (1.6.4)
(m)

Now, b 3 lﬁ%eso ue theory we have

E dErm)|dog=| T|KgE+m)|dv= [ | K g(&) | ey,

\ T'e Ty Al J Ex

and since, by assumption on K(£), the last number is finite, the
entire reasoning is rigorous in the following sense. The sum (1.6.4} is
absolutely majorizedly convergent at almost all points & in 7%, and,
as can bo easily seen, in every compact subset of £, and the resalting
gum function is independent of the order of the terms. Therefore
R €} is a periodic element of L, (T%) as seen from

Katgw):z} IxRt§+m+;p)=( }2( )KR(£+-m)=KR(s>,
(i Tl
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and it has the {ollowing properties:

J. | (B &) dvg 5 K, (1.6.5)
Tk
J Ry&idos=1, {1.6.6)
T
lim B8y dry =1 (1.6.7)
£ ) |E|z8, fe T, al £ O\

Furthermore, for fe L,{(7%), (1.6.2) has indecd the value {4 '“‘%Z{hc"
but if we stort from some kernels B (&) on 77 with the padperties
stated, and if we introduce the approximating sme (’ldgii,(. $Vand for

Fe ¥ the sums
Sxld) = j

T

FEA—E) R p(E) dugzw:\'*’ (1.68)

then most of the previous theorems can be established lewie.

TororeM 1.6.2. For periodic point and. ot Yunctions, theorems 111

1.3.2 and 1.5.3 can also be established Jor'the pariial sums (1.6.3) and
(1.6.8). O

As a Tulo we will represent petiodic functions by the provions
int-egt:als over Ewk’“&hélﬁ,]}a%ﬁ?bi}%@ﬁ}%héme same as for non}wrio&'}ic
functions, but at'one stage théorem 1,6.2 will be made use of, and for
this utilization of it W‘?ﬂ{e going to supplement it by a lemma in which
R will have intege\@iﬁes n only,

Leyya 1.6.1 Mhe (periodic) Fejer kernel

o\

3

P \ / " & S. 2
A\ E.ig)= (sin nag,)

N jein{sin g,
N/ m k
QO = > [I (1 — lfrij_]) PRI
” my==—n§=1 %
O =& Al e, (1.6.9)
.
where  A,(m) =ﬁ (1 _ [, o .
] n M o 1 umf[=ﬂ=--->]'mk{§n,
and

Anfm) =0 if for some j we have |y | > =,
has the properties (1,6.5), (1.6.6), (1.6.7) needed.
Proof. Since K {£)20, {1.6.3) is implied by (1.6.6). Now we have
Kn(&g‘):Hn(gl) “‘Hﬂ(gk)l where
{min narf)?
Eym il 087
) nlsin g2’ (1.6.10)



ATPPROXTMATIONS 21

and for < [ £] =4 wo have

1 A(5) _
< 1 . 1.6.11
Hﬂ(g}‘n{am ad:~ a (1:6.11)
so that «a fortiord lim [ H (5 dE=0, {1.6.12}
L N S EY
%
We also havo , H £y di=1, (1.6.13) o
g4 \
and if in (L.6.7) we 1'ep1a.(:e the exterior of the sphere | £ < 4§ byfﬂ}e’
exterior of the cube [£;[<8, j=1....,k as wo may, then 1t :,‘Lﬂﬁc(‘s
Lo estimate a certain numbm of tprms of the form \Y

1 AL 1

f_] . [ﬁk B H, 605 }}g

&
Now, by (1.6.13) this reduces to ( H, (&) rlglga}ﬂ this tends indeed
=8 &
* oAl ..\

to 0 as w-+2c by (1.6.12). $

Tt should be noted that the sharper (Ntlmate (1.6.12) doos not imply
the same cstimate for the produet ke,y;{?i (1.6.9), and the latter would
again not be eligible for applicationin a theorem analogous to {1.1.2)
on T} instead of on B,. wwwsdbraulibrary.org.in

Finally, we ought to mentigh that the periodic Fejor kernel (1.6.9)
ig linked to the nonpen()gi“e\I‘CJer kernel {1.1.19) by relation (1.6.4)
as could be dedueced flb\ﬁtheorem 2.4.1.
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CHAPTER 2
FOURIER EXPANSIONS

2.1, Fourier integrals

Tor the present we will introduce Tourierintemmls umll\- fier fiatietions

Ly(E,) and more generally V(£,), but not tor L (85 p- b, exeeph
that we will summarize statements on Planelierd 11 L= in”LL* fot
funetions Ly(,) whose theory we will take as known. How. \\s‘ \\hen
introducing Fourier series, we will envisape fo vl W ge eral
because it takes very little effort to do so. N

If Fe F{E,), we can introduce the Fourier 11: u1~fquu

Pl =PF{o) = [ e-tmitn 3 d RN )',' .11

Ex \\'
and it is trivial that it iz a bounded fmwt’}m
1@ i< @ (2.12)

and it iz also very easy to see th;»t }t is uniformly continnons for (%)
in#,. If F has a dgﬁp&%’qxg{gﬁqvm@'&%& write

., -2l flxy du,. {2.1 3
o) <t = e
Trmorim 2. iy 1\?3*1* GeV(E,) and H="TF @, then

@7 =) 6, (214

that is, thewansform of a convolution is the product of the transforms
i n\p'{z,}t?fculm‘, if f,ge Ly, then
Q)

R\ Pul) =) § () {2.1.5)
\ here i) = [ f {x— 1) gly) dw,, {2.1.6)

the integral existing almost everywhere.
Proof, Put b(z)=e 27149 in formula {1.5.15).

TuroreM 2.1.2. If F', Qe V, and

$lo)= j e ETHLOdFE), g zfcgﬂﬂi“? dGa),  (2.1.7)

then J.qg,(a) 82”““’”}(5@(05}=J1,5r(x—-§] AF(E), (2.1.8)
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Froof. Sinee

]

ol

|
AT E—S }dG' (o} dF(E ‘gJ.f]dG(a)].{dF@H:HG [ | F || <=0,
it. [ollows by Fubini’s theorem that the integral

’,i{ggﬂi(z, z—£) da(a) dF(g)

N
cxists, and relation (2.1.8) expresses the equality of the two repea-‘qu \
integrals by which it can be evaluated. (\)

In the next theorem a funetion &{x;) will be called a ccmvm‘&ﬂce
factor if (""g‘
f | §lee) | dv, < o0, SO (2.1.9)
By Q ~m’.\
and if for it (anti)-transform \ '
o
K{&)= f 2t 2 o) dl, &
o Lz \J
we have ( | K(&;) | dvg < oo, I, ’.;ngj) dog=1, (2.1.10)

A\ ¥

Now, the corresponding iwwfdhmm]ﬁhf{azy}%} gsidt® K(RE,, ..., RE),
and if in theorem 2.1.2 we pubfor @{A4) the indefinite integral of 8{x;),
then the theorems of ohaptg‘\\i 1mply as follows:

THEOREM 2.1.3. The n{egmls 2.1.3) and {2.1.1) can be inverted to
@

,~~.1;f(;-4;)~ ptmile, =) b () s, (2.1.11)
N Ex
@
and O F)= [de[ [ B 5 () dw] 2.1.12)
’\ . By

in the jwfl\w ng sense:
,Q"‘i* or any convergence fuclor 8{a) the approvimating function

3
N SR(x}:f 6(%) g2n it (o) du, (2.1.13)
B W
converges tn norm to f(z)
lim f | fiz)— 5 glw) | dv, =9, (2.1.14)
B

and for the approzimuating function

splr}= f 6(%) e2mitn Ay (o) du,, (2.1.15)
W Ep 7
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the indefinite inlegral SL.(A):J sployde, fs Beowoulle vonvergent
-l
to F{A). . ‘
(i) For f{a) bounded, the convergence of syla) «f o o at o is o bocal
property, and for any fe Ly, or cven Fel', it s 5o I

Ki(t) ﬁ SO &Yy
anid in either case, s p(x) -» fla) #f fle

&) 25 contiaunus al o oond Jora radigh
K(Ey only the spherical avernge of f(£) wround x ree el in rrmmr g Aty
For us the dominant copvergenes tactor will he » 7% .md n‘@t\the

Abelian factor £7127) and we are going to utilize the m”,,,pondmg
sums

2
& <

spla)= J Lka._ mU I ganitr, 2 F( ) ib}{ O {2.1.16)

."

for several purposes. If ¥y, Foe ¥ have cqual tmmlm i, then for

F=F, —F,we have ¢7(a) =0, and henee s AP0, But the Ber noulli
Tt Gk a null funetion s a null fumtmn, d thues part (i} of Legrem
2.1.3 implies the following umqueneiaq t}momn
THeEoREM 2.1.4. If ¢¥1(a gﬁ%{ D, then Fy=F,. If ¢y, )= el
then fi{x) =f4{x)

y.OrE: in
Next, (L‘Sﬁl‘lﬁ'l,e“ﬂh‘dfﬁ R 'Ilﬂ f 1650 happens that

.x“?j | ¥ (o) o, < o0, (2119
\"‘ Ex

HSince 1 g—all 2283 ezmtoc, ) l Lland e el 51 g5 B o, Lhe fune tiomns
(2.1 16) are then Com*ergent locally uniformly, towards the function
o :
" \W

N fol) “J Ekﬁg’”"" A ¢Flo) dv,, (2.1.18)

amgd for any continuous c(z) which vanishes outside a compact set

J o) sR(x)dﬁx+j efx] folx) dvy,
Er By

Howevee, again by theorem 2.1.3 we have

2 &

[ o) sR(m}dﬁga—:»J c{x) dF(x),
v Bk g

and by the second half of Temma 1.5.1 we obtain the following
aonclusion;

TaRoReM 2, L5, If for Fin V, the transform ¢F () is in Ly (K,), then
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F(AY is the indefinite infegral of the continuous function fox} as given
by the inversion formula (2.1.18).
In particular, if fe Ly and ¢, ()€ Ly, then [ is n.e. equal fo the eon-
tinuous function .
folwy=| e*meatd (o) de,. (2.1.1%

uEk

As an incidental application of this theorem wo note that a con-
vergence factor 8(x) as previously introduced may be assumed to bes

continuous to start with, in which case it iz given by O\’
a :\’\
S(Q',) ;J gemifa, £) Ii(g,!) d?}g, ‘:‘, "
Ex )

. . . . . €&
z0 that in particular §{0)j=1. This being so, wo will\pow give the
actual formal definition of a convergence factor. !

DermvtTios 2.1.1. A convergence factor 8{a) agmas used in theorem
3.1.3 is a funection with the following pmpertics}&a) is continuous and
3(0)=1, and §{x) e L,, and its Fourier tt‘ang’;ﬁdﬁm win L.

W
o > 3
N
X

2.2, Positive transforms«."@ldirtﬁiﬂtbl Fdransfoirms

TupoREy 2.2.1. If for fe Ly e have dfa) =0, and | flx)| £ M for
=t (that i3, if [ has o positive transform and is bounded in the
neighborkood of the orig J!«N}m B Pe Ly and f(x) is equal to the function
Folm) {see 2.1.19).

This theoren: is ohv'loubh contained in the following one.

THHOREM 2 2\2 Iffor FeVwehave ¢7(2) Z — y{ee), where x{o) 20,
y(e) e Ly, and“xfwe have
Q . ]
N f dj«‘-(g)‘ng, 0<t<x, (2.2.1)
O |12
‘3 '
or only ‘R‘*j e TRIEEQR(E) | £ (2.2.2)
BE |

then ¢¥(a) e Ly, and F(4) is the indefinite integral of ihe function folx)
given by (2.1.18).

Proof. Wenote that ducto | F | < o0, (2.2.1)is satisfied antomatically
for f¢[= 1. Next, (2.2.2) is indeed at least as general as (2.2.1}, this

being an abelian theorem, since, if we put G{t}:J dF{E), s0 that
HE:
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. -— e ——

Gy =0(t%), we have )
Rkj 6—rrR5L§|2dF{g} zﬁfcj o-THEE G
1=t

0

-~

=Rk_8,_ﬂRZG(1)+2H‘Rk+EJ e n.{i”-’a{’-”.‘].’.'dé
L]

- 0(1)+0(1}J R4 g T I (1)

0
. _ s onaN
as B—co. On the other hand, if it is known that F(d )z 0,1hen (2.278)

s

is not more goneral than (2.2.1), this being the classieal Tanbérian
theovon, and (2.2.1)is the ‘ natural’ way of putting the (,ondstlomlhtn

Now, for the fonetion (2.1.16) we have (‘.}"
3 (0):3;;[ 6_7;32:5-\3@1"@:] +J R4
) . v Ex TElE1 N2 ot
but J \.5_ g~7F F {10, and therefore (2&2)13 equivalent with
1>1] R
| 52(0) | € Mgng
Therefore O
05| @+ xiemay ééﬂwwrf yle) e
v Bx Ex
and becanse of ikeY ﬁfag[ﬂfﬁ mﬁ§ "éf )2%::5) this is = M+ M, =105

Fherefore, letting R -+ a0, whobtain

) )
J. Bla) —l—’x\{‘sc]‘?i@ <o, and henee ¢f{a)e L,
and now applyt th:edrem 2.1.5.

D’EFINITI/Q’\LQ 2 1. {(In the theory of probability} a (jeinf) dis-
tribution j“wncimfn F(4) or F{z;}in B is an element Fe VT Whl{,h is

normghized by || F = F(E,)=1, and its Fourier teansform ¢ (%)
called'a characieristic function.

L OFor such data we obtain the following special conclusion:

\/ Trrorey 223, If for k random variables Xy, ..., X, the joint dis-
tribution function F(x;) hus o non-negative characteristic function and if

=— 1 .
lim ?—kP{i X+ 4] Xy Sr)<on,
r=0
then F(A) is the integral of the function

flz)= J e~fmite st dloy du,
Fi

this expression converging absolutely,
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Ti @{x) is the transform of f in L4 (£,), thon ¢ (=) @(a) is the transform

ofglz}=| Fflx+§ )ﬁg_)_d-vg {sectheorem 2.1.1). If, by chance, f belongs

o B

also to Ly(E,), then by Schwars’s inequality we have

lgle) =gl | = |f(x+€ flyg+E 2| £E) | dug
é(J~|f(x+§)—f(y+§)]2ffﬁg)é(f.'f( “)k
| =7;{x—y}. IJ‘
where 7,{n) iz the translation function in the L,-norm. Thereﬂoz‘e, g(x
i continuous, and by theorem 2.2.1 we have ‘ 3
[f(a:—i— dag—f¢ o) a2t Al | \\' (2.2.3)
I fi, f; are two such functions, then \ ‘\\“’
f hlz+E1 [g&] g&e a) ermi o) gy (2.2.4)
and in particular '.fl \?53; r?& ag gﬁgj‘y Ein (2.2.5)
f|f £) 3y —f‘ dla} | dv,. (2.2.6)

Now, by taking hmlt&\}\La -norm the restriction that f, f,, f, shall be
not only in L, butsalso in L, can be eliminated and the following
statements can f&Obtained:

THnoRKEM 2"8'.4‘ With each flx) in L,(E,) there is associuble ancther
Junction g&Q{l = {2 likewise in Ly(E,), both determined a.e., such that
(i) relatifois (2.2.4) (Z 2.5) and (2.2.6) hold, (il) cuch ¢{a) in L, is the
im}:a,si@rm of some f in Ly, (i) for any Borel set A the inversion formulas
Fotde/ R .

A J Flx)dv,= l ¢f{“)(j gimite 2y ]d%, (22,7
A J B e

[ | crrnnds,|an= | i, (@228
Fii) Lo L A

and {iv) if f(x) is also in Ly then ¢ () is the ordinury transform.
If it also happens that the integral

g)= | $ilmyermia i,

Ex



o

"\" £p= K - =% milen, 3
Qe ,(4) f R E)AF(E) = 3 Anlon) Sm) 550,
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is boundedly comergjent say, and it we ntegrate Doyt boeieles with
respect £o a wob A and compare with (2.2.73, we obtain

I ~

| furde=
4
so that f(z)=glx) d.c.

gl oo,
1

P

2.3. Fourier series

A o N
We are now tarning to pertodic point aned set funetinns. For ang
FeV(T,) we are introducing the system of Fourier covtivieniz{ \'

7'\

¢(-m)z¢f"(-m->=J L&) \

-
N
< 3

for all lattice points m=(my, ..., my), aud il ¥ lumﬁf\ﬂf”i'i\'u\ ive ()
then this is of course \V

~

QS{'TIL) = st(m} :J y g m,glf(\ia‘fz{;g‘ {231)

As hefore, we now havc, | $F(m)| 21 Aghand for H=F ot ihe con-
volution rule ¢Z(m)=g¥(m).4¢ (s Wnd as an analogue to tiworem

2.1.2 we are makmg7 the tul}(ﬁn& p?tg\}pent Given Fel'(Ty) i
a funefion 4{ i F);y Ak uﬁ?—l ute

*’(g )= alatymimo, B yim) | <<,
Gy

convergent sories

then {by a djrect s1h>§titution of this expansion) we obtain

V(“E EYAFE) =Y, y{m) {m) e2mik 21 (2.3.2)
\.. " -'r."k {m)
It insgs;;:twu]a.r, we put for ¢r(x) the periodic Fejer kernel of lemma
1.6, %hen we obtain a sequenes of approgimating {unctions

3

{omed
(i) | A m)is1, e A (m)=1 (2.3.3)
and nm

{ii) for every » only a finite number of * multipliers® A {m) are +9.
Hence, by theorem 1.6.2, the follywing conclusion
‘ Truorem 2.3.5. (i) Bvery Fe V(T,) is the weak limit of indefinite
1;?3;6991‘(1-.?,3 of certnin exponential polynomials, and any feL,, 1 Sp<X
ks the limit in norm, and every continuous f is the uniform Limit of



FOTURTHRE HXPANSIONS 29

exponenticl polynomials, and the polynomiols avise from the Fourier
qeuw ,fu mally by the insertion of cerlain multipliers A, (m). (i) If

, el [T .} have the same Fourier series then they are equal. (iii) If
2;5 G im) <o, then F is the infegral of

Sy =Leh{m) e@mitm. =), {2.3.4)
On the basis of this theorem wo can now introduce kornels in general.

Trurorem 2.3.2. If §{x) is a convergence factor {definition 2.1.1) for
which: also

| K(£) | S C{L+ | & F+r)2 285

~\

then foi any Fe VT, the upprozomating function AN
Sn(i’)zj K y(x—§)dF(§) SO (23.6)

~A
has the Fourier series v
splay~ é( ) b () 27 m. 9’*\\“ (2.3.7)
Lt bid \

Prouf, We have already stated in qectloﬁ ¥1 that (2.3.5) implies
3 sup [ Kglae —E&+my,. ,.J!k S+ my) | = Mg <o,

{ 4
() 0, £ Ty W, d]al.auhbrary org.in

For fixed R if we start ont w 1th zlf%bte BUM

fu @‘)\T ng)” ?ﬁ €2ﬂz(m i) (238)
we obtain % \}\ ’ Kple—E)f &) dw
¢ sl\ .': — E 6 ( ) ¢n(.?ﬂ) e2mﬁ(-m, =) (239)
xt\“’ {ra) L

by dit‘ect,‘ﬁl“1;8¥itution. If now we take a general feL{T}) with
a Fourijgir; geries F(zz) ~ Sigh () €270 ),

h@g Hy the preceding theorem there is a sequence of polynomials
(298) with | f* — f!| 0,50 that automatically also lim @n(m)=¢(m).

=D
Now

V@) —sple) | £ [ Kple—E} ][ /*(E) £)jdv =M p.
J B
therefore the Fourier series of sp{x} is the formal limit of the series
{2.3.9) and hence the conclusion,
For a general F in V, there is a sequence #7 of integrals of poly-
nomials which converges Bernoulli to F on 7'y, and this does not allow

fr=flls
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us to complete the last step of this reasoning quite so divcerty, but it
suggests itself to make the following modifivation. Wi intridiece bhe
peciodic kernel Ruf)= S K &4 m),

o)
as in section 146, which, beeause of {2.3.5), is also continuons, and the
uniforro convergence of

"

sie)=1 Kple—EdI(E) N\
o T
towards sale)= | Raka =) RS
T @
was formally treated o lemma 1.5.2, “

However, the original reasoning on &, tself ad £l u[\':mtﬂ'ft’ of
applying step-by-step to the Stepanoff almost pe mm}ic Punet s a4
well; whereas, on the other hand, the deseriptipnat a Stepanofl class
of set fonetions F{4) which would corvespond xfm“éiav[y to tlue perlodie
clags ¥(T',) hus apparently not been givew! \ ’

Theorem 2.3.2 has great technical ad%'antagea For iustancs, if we
put z={ in the formula ™

s’¢

R?cJ. REL? Cﬂl t&m@@lg@r‘g”lm JQS(?% eﬁmu J.]
Ex -

{m)
we obtain the following aKmlogue to theorem 2.2.2:

TeEOREM 2.3.3. I}%@r}"‘ € V e have dm) = — y{m), where x(ni) 2 i,
Bx(m) < o, and P (E) sutisfies the same boundedness condition wd x=0

a3 i theorem 22 2 “then 5 P p(m) | < oo and F is the indefinite inlegr al of
:t\' “.’ f(x)=Z¢ {m) g2riim.m,
maﬂy}\fm f € L{T,), this implies again

."\'.;o J f(;}; -]-g f{g} CZ'L‘g_ l (‘j m) 12 e2‘n‘i(m,:c},
. \¥4 i
\ ‘and in particular

[ i@ rim=x1pmp,
T ()

but this and the Riesz-Fischer theorem will be taken as known
BNYWAT.
2.4. Poisson summation formula

Wo have seen in section 1-6 that for f(x) in L,{E,) the series

Jay = % flw+ my (2.4.)

L}
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convorges in Ly (7';)-norm, and that for any continuous poriodic e{z)

wea have
[ f(m) cfx) d-vx=j Fla) e(x) du
< Tk Ex

Hence the following conelusion:
Treoren 24,1, If f(xye f(H,), and

N
Bl =hle)= f it dy, R
Eg ¢\

is ity Fourier transform, then we have \\,

2 flasm)~ X Plm) emim (" 4.2}

(rre} Cim} \\
in the seinse that the series on the right is the Fourier senies @f the function
{241}, . Y

Thug in particular 3 e P glm) e e ¢ \ &
(r) X )

converges in L1 )-norm fo f(x), and it cowe;ges lLiterally to f(x) at evcry
point u,?em(f’(,e ) i continuous or af Zeu&t‘wfzeae its sphorical mean fo(f)

eontinUous, " libr
rauil
Tor practical purposes the io]ﬁm SHiL] %pccmla gncjfgulon isimportant:

TuroREM 2.4.2, If fla) in B WEY,) és continuous and the series (2.4.1)
is uniformly convergent a@%{g& ) | < 00, then relation (2.4.2) is a true
egunldy at all points x)

For any (#,), the I‘@urler transform of fla;) e 2780 iy @l +u),
and thus (2.4. ‘3’) forma]lv generalizes to

\Zn::f(m—k:r} gemilm J?—E @ (m + y) g2, (2.4.3)
Furt}lermoro for any nonsingular affine transformation »'=Tu,
x '\Z {0, We have

@) =Je‘2”*3[“‘¢']f{m’J dvg=|det T jJ.e—m'{“»“‘?f(Tx} dv,. (2.4.4)
But («, T'x) = (T"«, «), where 7" iz transposed to 7', and thus
Gla)=]det T { 1 (T"ex),
where 17{a) is the transform of f(7'z). Thercfore,
| det T'| i) =g (1) @),
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and henee we obtain the following statement:
TarorEM 2.4.3. If ¢lor) is the transforne of fly fhew for any point
x, y and any affine fransformation T we frrre:

Paet T 2 A (T + Ty e 2ritnnn=73] AUy Ml A gl (2.4.5)

(3] I'm)
The most renowned application of this is

}_, 6_{‘”'1'-) MLl \‘ el R e, 5
G} [rn)

and the full affine version of this is

t}h

Z o7 Q- 2nion £n, o = (dvtfg‘) Z LR 2l 1
{ml () .'\\
whers Q{£) is 8 nonsingular real symmetrie quadmtm forin vl @'(E}
is jts ‘inverse’, N
If we take as known the formula '\ v
4{ 71) i1
[ e-tmtia 42Tl d) iy oo AL ”‘"H).
, R eyt
then we obtain N

wwr dbraulibrary .org.in
Tk N
(Gl SO G st
LA )%‘Nlm-i—tl’)&mn z
for any kz1, and e\pecmllv

1"” £
‘\ 2‘ R —— 2‘ e—‘ZﬁtImHana'

) 2
\“. n ot + (mtz)®

o

for ?c&\l ;However in this case the right side can be 'summe 1, the

buwni\b\mg T
NS E—
2\ l—Z e eos3ma+ 6"47{:‘

and on this point we will still corargent.
Finally, we ought to mention the case of the ‘discrete’ fu,-space
in E; which ariges by taking as underlying space the set of all lattice

points M ={m} in B, and making it into a measure space by assighing
the measure 1 to each point singly. The L (1

' )-space thus avising ts
the space of sequences { f{m} with

[if il = (2| flm) |22 < 00,

and the analogue to the set fanctions Vi) need not be a.ua]yzed
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scparately, every such set function being absolutely continuous now.
Any element £ with {initc L;-norn

3| fom) | <o

has a transform 3 f(m) et m = ()
(o}

which is continuous and periodic, the inversion formula being

fim)=| e¥mimal i) du,.
o T LN
TUniqueness, convolution, and the theorem on ‘positive t-rans,fqzrr\r'is ’
are trivial now, and tho analogue to the Planchercl theorem ‘qu‘ﬁ_,(ﬂf }
is part of the Riesz—Fischer theorsm already mentioned. "I"ﬁe’épproxi-

4

mating sums for convergence factors are now A
o v’
sumy= B S Kgfn— ) )= 9 (—) B d,,
{#1) < Er & Ve \\d

and, in particular, we have ‘\ v

r Y

J ol 4B B (o) edritmatdy,, —RES TR = ),
Er &Y W

which is worth stating perhapsd@ﬁ%%gﬁﬁk&@f&lgﬂﬁgy-

2.5. Summability. Heg(énd Laplace equations

Some of the ﬁndjnge\é@‘tﬁe precoding sections may be summarized
as follows: A\

THEOREM 2-‘5.1\“}';?}686}2;8?’ we are dealing with o Fourier integral or
a Kourier series™

'
\O" f Pla) exmi A,
& flay~ Y
D X him) e2miom
N (m}

o
N

) e lake convergence factor 8(ay) in By with 6(0)=1 and put
K(Q:j Pl @ 3o du,
Ex

then the approvimating functions

E a\(@) (ﬁ(mj) glmilm, @

BlIA

L
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coist and they have the * tdentical” vulue
51) =R’°J KBy — 1), oo Bl 8D JE N
Ex

This also applies lo set functions F{A) instead of poind fusctions flz),
and it also applies to Fourier series of Boly and Sty sl nbmost
periodic functions,

As regards Cesaro-Riesz summability we have Pl that ifge
natural ‘spherical” version arises if we put

IS EIR AR
6(a)_l 0 o | | \

fand nof 8(e) = (1 — | e |} for | ot £1, shich for 8= 1 ayd@»= Flmppens
to correspond to Fejer’s kernel], und in this caseoy & Bty e

K(E) = KOE) = H2( £ )
whers H{w) :i_ Ja':‘“‘{?} (2.5.2)

where J,{u) is the Bessel function :{%ﬁér large ¢ Lhis is () 7 55,
and thus for ~;~’f.' in
www.dbr?ullfgga%é’:’;?f g- {2‘5.3)

- ] :
we have | K8(E) ]2 CAGI E | #+9) 1 with p=d— }{k—1). Thercfore, il
8 excends 4(k— 1) ¢hen il our theorems apply. The partial sum sh{x)
exists at all pointsand, incidentally, has the value
\¥/
O %
\,:\ Vel = Rékwaf Folwyutt=s-1J, . tuR)du, {2.54)
LY 0

imcj~ .ﬁh}}behavior of sd{x) as R—>20is a local property only. For the
%il\iliifhlg exponent §=1(% - 1)}—we called it the ‘critical’ exponent—
it was shown by Riowann for & = 1 that the localization property
holds even then, although mere continmity of f {u) as » = 0 no longsr
suffices. However, for &2 2, the zituation is more com plex and more
interesting, and although loealization still holds for feL,(£,) and
even fe V() it no longer holds for fe L,(T,). In fact, as we have
de.monstrated, for each k2 1 there is a periodic Z,-function which is
0in a neighhorhood of 4=0, and for which $4(0} is unhounded 23
R -»cc. Furthermore, we showed by a subsequent argument that for

Ly(T) ocalization does hold, and we raised the problem for L,(T3),
l<p<2, and this problem is as vet unsolved,
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We ure now turning to the convergence factors e=7 %1%, ¢~ 2| for an
analysiz of a different kind. In the case of the first factor we put
¢ = B~} so that 0<f<co, and B—on is to be repiaced by =0, and
we denole the corresponding s (x) by s(f; ), so that by theorem
2.5.1 for the funetion

I . 8 =
s(t; x):tl‘jcfﬂke—tmhlm—.fl J(E)d, (2.5.5) N
we have the expansion R
- ¢(\A
e mtlatrmia gy dy, or 3 et [P+zmilan ) i) {2'.5.6)'
J Er ()

respeetively. In tho sceond factor, however, we put = R*f, and for
the function ~\\

_ T3+ 1)} LA(E) s -
d’(f; IE)— '(?H—l} '. £3+ | r— Erg}z(c_rl)’ (Z'O'J)
we then have \ ¥

[ e~mmtlalienila R (x) dy, or E(3—9’1?1”""'2”"“-”’(;5(??;) (2.5.8)
#E fmﬁ’

respectively, and we recall that, io»r'JL*— 1, for the last serics we can
also write s WWWdEJIfa}llcbr;éy org.in
j al- 2«95(*‘00& r{ar — &) + 647
alternately, Now, if in 2\3\6 say in the integral, we take the (formal)
derivative with res pect Mo ¢, thon this introduces the factor
SO e ot )

and, exceptfGra constant, the same factor can be obtained by forming
the negati¥s Laplacean

(2.5.9)

AN &° b
N\ A,= —(-,\—2+.. + 2) (2.5.10)
"\: O] y
u}&h respect to @, ..., ;. Also, since |g{a) | =M 1t 18 vory easy to

verify that these differentiations are legitimate, and thus the iunctmn
(2.5.5} is a solution of tho heat equation

o8 ]

— = ——-Ag, 2511

ot 4o ( )
of which the given funetion f{£) constitutes boundary valueg as £ 0
in & manner described in our theorems. Next, in the case of the
integral (2.5.8), one differentiation with respect to ¢ introduces the
factor —2m|a] which cannot be compensated by differentiations

o
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with respect to the variables «; direetly, but two differentiations with
respect to f can be so compensated, and in fact we abtain i b copation

e

;:gws (2.5.12)

~

™

which may be interproted as a Laplacean in £+ 1 viniabhis

8% % o2y N\
e tamt b, 0,
ot ont &g O\
first of ull. For k=1, formula (2.3.7) Is the familiar solutighy¥or the
boundary-value problem of harmonic fonctions in (4, {}Jp‘? I".-1|{“ ha.l.f-
Plane {0, and formula (2.5.9) is the cven more J‘z.npi}ﬁlr sr.nlutmn in
the unit circle [z] <1, for the com plex variable z ::...?x‘“-‘”‘l’ Léxi

However, from another approaciy, it Is indicabed¥6 keep in (2.5.12)
the variables (£, z) apart, and to take the OHcQ{Li(JI‘lz'nl sgitare oot on
both sides of (2.5.12) writing it thus €

A,
s .’t‘} % _.—].3
E: __Agz'g,w (= b )

as we will still discuss. This dong (8.5.13) fulls under the gencral form
ofan operational 6%%@0@131'3@?}]81‘3!‘5/ org.in
No=—A,f, (2.0.14)

ot

A4

O : . P .
In which A4 ix a li_noi:(‘o‘pera.tor with certain positivity foatures as
possessed by the Daplicean, primarily but not at all oxclusively, and

all such equat-ia{l‘s; fé.é‘li) will be interpreted as diffusion eguations,
as we will still see.
y t\ oo

7N\W
2.6. I%Qta relations with spherical harmonics

&
Wertow denote a Fourier transform in £, by
rN\®
a \Y%

\ AP =B, ) f (e dy.. (2.6.1)
\ 3 g(yJ) J.Ekp f(Q‘J) s {

and in both spaces we introduce spherical coordinates which we will
denote hy . 36
’ w=leil Q+.vg=, (2.6.2)

B=1y12 it =1 (2.6.3)
Actually, in such coordinates the
ong, and, strictly taken, it m
statementa; however, we w
exceptional status is a matep

boint of origin (« 7)=1{0) is a singular
ust then be excepted in virtualiy all
ill do so explicitly only whenever its
ial and not only & formal issue.
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A fanction fiz,) is radind if there is a function fy(u}in § <% <0 such
that f(x;)=f,(j = |), and it turns out that for such a function the
transform (2.6.1.) is likewise a radial one, g(y;}=g4(ly!), and the
functions of the radius are connected by a so-called Hankel transform

2 [, [ .
Fol®)= . J fo (_) J 351 (2r2t) utkdu
v il T

I [ AN
= 5 [ Solw) Ty g (2run) wd® da, (2.6.4)
' Jo 2\

If, however, the “angular’ variables £; do oceur, then the depféricléncé
on them iz best expressed by means of spherical harmonics which we
are going Lo introduce now. \: ’

Darsiron 2,6.1, (Somewhat ambiguously) a (snlerical harmonic)
is & funetion either in &,, or on the unitsphere SNF+...+&=1. If
in I, a harmenic of order n, P(#;) is a homogehcous polynomial of
order # which is a solution of the Laplaceax( ™

& §2%
-~ AP (e} = (513 + .. :,l-’-‘a?J P x)=0,

RN
and if on 8, it is a function PN R EEIONERd with a P, ()
by means of P (£;)= P, {x;/ ahor, equivalently, P z)=]x|* P},
such a funetion sa-t-isfyingi’-]}e equation
AP = —nin+k—BF, (€.
where A, iz the ° chryilinear’ Laplacean on 8.
lEniara 2.6;1&1‘} H{t; ) is tontinuous in 0 << 00, Erely, and is
Sfor each £ m@tk harmonic i (£;) and if the infegral
O .
R\ [ B )=
0" Jo
& . : . :
kﬁ-bé‘(?h{teﬂy uniformly convergent then H () is again an n-th harmonic.
In fact, for given n, the nth harmonics are a vector space with
finite basis, and & nniform limit of polynomials in real variables of
the same degrec is again a polynomial, and all {mixed) partial
derivatives are uniformly convergent likewise.
Lena 2.6.2. For any harmonic P, (£) the formule
J-n*%fc—l(_"‘)ﬂ-zj_
Zhk-1

—
[
==
o

Py

2.8 P L) dep = 2minPo{E)
Hi

holds.
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This formula is equivalent to a general version of the addition
theorem for Bessel functions and will be taken as known.

TurcreM 2.8.1. If flz,) e I, (E,) is of the form
Sy =A{la[) Puld), (2.6.6)
then s transform {2.6.1) 15 of the form

gy =utiy ) P, (260N
where P,(£) 15 the swme harmonic tn both formadas and £ :\'
AN
by Je (O = 3 ;. O
ﬂ(v)=f'3—J. A(f) Tnses@rayutidu, N (26.8)
e Je ) AN 3
Proof. For spherical coordinates a;=t§; we ll(n,(\?z‘; = ot ey
and hence -
gtup=| 2 tH(J miind Bl m) i
° 8k

\ \
and if we subslitute (2.6.5) the assertioh Follows,
If we replace A{|x |} by A{|»

I}Ifc,i,"? antd u(|y 1) by p{ gl yimn e
obtain the following variant:

'S
\
k.

THEOREM 2.6.2, {f‘ﬁ(%amaélﬂﬁ@w of ginform
)‘ A
er) ([ 1]) Pufers)
Sy =nlly b Puly)

p N "Jm [ . i a8
el (1}) D i L ,1(;?;) I wyps (Zren) whe % dae, (2.6.9)

and tke-refa?fé; etrcept for a factor i*, the connection between A{u) wnd #{v)
in the %égf{”k; #) s the sume as in the cnse 2n+ k; 0).
Newyin any dimension, the transform of e=7 1 #¥ i g=7 191

then,

, and hence

\“THEOREM 2.8.3. For any harmonic we have

<$

JB P?a(xj) e~ te'® {{---Bﬂi(y,x} dt‘r.ﬁz inP‘n(y,’) e & |'.!,
e

: P . . . . o
that is, Pz e~ is an eigenfunction, with eigenvalue i*, for the
Fourier transform aperation in £,

If wo now apply theorem 2.4.3 we obtain the following general
theta relation:

THEOREM 2.6 4. For any spherical harmonic

Py, ., x), r=0,1,2,...,
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we S

— 3 2 Fag g Bia
B, g} e TET e e {8 S P (o Ly ) emDmd k)
(i} (rreh

(2.6.10)
for 0 t<oc, More generally, for oll x, y we have
R (et z) e TiimealseniD im ey
£
=i~ #(det Q)2 T Ry (m 4 y) e~wOQ tnbu) 2B fmprues (2.6 1T
(22} A+
AN
where Q{m) is any positive definite guadratic form in {my, .. N and
&' (1) i3 the inverse form, and where R (y) arises from a karmom?’ poly-
nomiad {8} by a substitution £= Ay which transforms Y, md Lint 2(m),
and where R(y) arises by the reciprocml tramposei Ceubstitution
E=(4%1"1p,
Hor our next application the following fact w ll\Kb(, taken as knovwn:
Lunga 2.6.3, If o, v ave any complex mambeﬂ{mtk Re(p+v)>0,then

Qw—lT‘J.
hmf eet Ity it 2 D))
etoto l{fv ﬂ; +l}

Jor all je, . If v—p-+2=~g, ws%g.efh BEs gegdpma Jeclor in the
denominator is oo, them the limit has the value g gecordingly.
Using this, if in theorem {‘6 1 we put Afw) = ({27) )7 ¢~ then wo

obtain the slgnificant T\thn

lirn [. A ( 235)‘}1 [ n(gi) g~ 2mily: @ d'va:
s 40 B ;‘> i i,r_':,yr . ‘+?’b)}
SO0 T@wluE T e

for (! [*#'}\The constant ¥ may be complex, and if we want the
mtqg&il o bo absolutely convergent we must put Rey> ~%. How-
<t\§ “the relation also holds for Roy> —k—mn, with the integral
eXsting at the origin as a Cauchy principal value {spheorical}.

A remarkable situation arises for y= — 3% which we will describe
separately.

THEOREM 2.6.5. For any harmonic P (£) we have

lim Jﬂ Fults )e, —elal g=2miln, W == 7 Py

¢ 40 [ iy

and thus PE)]| = |~ is an eigenfunction of the Fourier transform
operation, for the eigenvalue 3"
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2.7. Expansions in spherical harmonics

We now introduce the coordinates (2.6.2), (2.6.3) into the general
relation (2.6.1), and if we put

flzls &=z, gllylin)=gw) (2.7.0)
then this relation becomes

. . A
g{w; 1, =J. ( [ g Tmivin B flu £ dogg ) w2020
LI (D))
I order to utilize this we now take it as known that any func twn
¢(£) on §,_, which is continuous, or only belongs to Ll(é J, has
& ‘ Fourler expansion’ in spherical harntonies, ) \\
BEI~SpuE) A (27.8)
#eo 7o
by which it is uniquely determined, and. }wax\jfit-roducc these cxpan-
sions for our functions {2.7.1), denoting thetn thns:

Jow &~ XV £), (2.7.4)
www.dbra u'Jj’ﬁFﬂ'r‘y org.in
F{, ) Egﬂ(t S 7)- (2.7.5)

If now we subbtltut‘e\ﬂ 7. 4) in (2.7.2}, and apply the uniqueness
property, then we ‘gbtain the following conclusion, which can be

established I‘ngl"{)u‘%ly for any class of functions for which (2.6.1) can
be defined: (N

Tux Eﬁﬁ 1.). In spherical coordinates, the Fourier transformation
(2.6, l}\?i\ecomes the set of relations

P ) 271'@“
QM= f”( ) wrameyutdu, n=0.1,2,...
(2.7.6)
) 6'Out' first application of this will be a kind of converse to theorem
6.1

Torgorenw?2.7.2, J fa measurable function Ala) im0 < v < 00 is such that

L F AL} ) edvdy < oo (2.7.7}

Jorall A>0, and if [ Alw)uTdu0 (2.7.8)
Jo
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for al o> 0 (thus, for instance, if Afu)>0); and if for a function @(£;}
in Ly(8,) the function fey=Adle) S(E) (2.7.9)

is such that its Fourier transform gly,) is Likewise of the form

gly) =y Dy (2.7.100
then $(E) must be a ‘monemial’ spherical harmonic P (&), and gly;) 18 <
as in theorens 2.6,1. A\ ¢

Proof. 1f we introduce the expansion {2.7.3) then we have & \J)
Fult; £5)=Al1e) Pulfs)s AN\
and by (2.7.6) we obtain ) '\\
G0 ) =) o) =0, 1,200 27.11)
| A
2eh [ .
where tale) =" [ Afu) }’ﬂﬁk_ ZWN} it (2.7.12)
i

o
,o

But by (2.7.10) we have alternate vallies.

MCH WW@B}'aLﬂhﬁﬁr& 3rpin (2.7.13)

and by comparing this wigh, (2.7.11) we find that if for an index
#=0,1,2, ... wo do not hdve
&

Bal1:)=0, (2.7.14)

then there is a con\éﬁ{ﬁt ¢, such that
o = 2.7.15
2 ral) =0 0)- (2.7.15)

Now, b} \\sumptwn (2.7.7) we may substitute the expansion

o (?T'?i-f )ﬂ,+§?c—1—- 2y

Y
\'"\‘w J oy (2mus) 2=J '1’{n+ 1k+fp}

in the intogral (2.7.12) and infegrate term-by-term. This gives Tise

t0 a convergent cxpansion
[2=)

4”'-"»\(1}) =X s, vvﬂ+zp:
n=0
and by assumptions (2.7.8) we have @, o+0 so that the expansion
begins with o effectively. Thereforc, wo cannot have (2.7.13) for two
different indices #, and thuy we must have (2.7.14) for all except one
index #, and this is procisely what the theorem claims.
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Now, the function Pt(u,)_u c-’“‘“ p 20, satizties {2.7.7) and (2.’?.8]
and hence the following very.special infercnce:

TaEoREM 2.7.8. If we have

By e 1= Ptr o du = fy) ¢
W Ex
for two homogencous polynomials Iy (x;), €ly)) af some r!r-f,r:'r-r-s' v, s, then
P,{x,) is & spherical harmonic, and we have s =r, 6 (i y=t"L0n) o ON
In partieular, if for o homogeneous polynominl I\ () wr Imw A

J P(x}(,—mlﬂ ~wiln @ gy — oy} m T . }) 7.16)
By

then P,{x,) s a harmonic and ¢ =i \\ Z
We now recall that the (inhomogensous) Hasiige polynomials in

one variable H (x), n=0,1, ..., afler repla(mg\i‘ by (27)te, have the
property - e,
j‘ H (= o= TH g-tmie d-’ﬂ‘z’f»-‘? Aye gt

— N
Ne/

However, any polynorial P, (z;) eali be expanded into a fiuite series

W dbraullBrary org.in .
a“’\ H ( ) H‘u,({? ) { o ];)
T RRESL

and vniguely so. The;gf{ire, the transform of P, (x;) e~7!# " is

\
SN Qe

L >

whete Q@SS X (Orretnig o H () o Hoe),

NS fao.edmxiin e
o\ T =

and S\Ge } is & homogeneous harmonie if and only if

™

N QO Qn(yu')ziﬂpn(yj),

<

\\ we obtain the following theorom;

THEO.REM 2.74. A homogensous polynomial P,(z,) is a spherical
harmonic if and only if,on representing it by an expansion (2.7.17),0n1y
such cocfficients a,, ., are =0 for which

foyt e Hp=n—-4r, r=0,1,2,...

Tum.ing now 10 a somewhat different topic we note that relation
{2.6.9) implies as follows:

Tazowsm 2.7.5. Subject to ussumpiions, if we are given on Sy @
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function ¢( ;5 Jewith the expansion (2.7.3), and if for some vy withRey > — k
we consider on Sy, the function with the expansion

DRy R )

W) = ‘)§k+,zE D L@ a(E), (2.7.18)

o Thln—y)}
then the function Sl =(2m: |z )7 ¢(E)
Frs for (x;) 3= (0) the transform ¢
gly;) =2} |y -y (p), A
2
in the sense that we have O
gly;) = lim J erloifmy) e iy, N
R A
the Hmit existing, - N
Now, as for specific assumptions that are sufficientyive quote the
following theorem: o\

Timonewm 2.7.6. For given v, if 2n is gnlesen integer for which
2n>Rey+ 3k —1 and if §(&;) belongs to difficrentiability class O on
S, then the fum’twn (2.7.18) exists (md v mn!muous and the conclusions
of ﬂzcomm 2.7.5 hold true. wirs.db 4
Also, &f q">0 is an mtege}ﬂ or.zi “ach 'fngﬁtg}} g—1+q°% then
W (E,) e O, andthus if dE;) ea(xjtkmalsoy (£ EC‘@’ JorRey > — k.
If.*nally if PEy) i (real), a@al wtic on Sy in its “natural’ focal co-
ordinaies, then g?(gj) 154 l\bafwlﬂw
The last-made staieﬁcnt on analyticity is non-obvicus. The

theorem applies in particular fo _
AW g—2milz, v) d’!?a;

OP05; 8) = lim e-elwi,‘i, (2.7.19)
ST = Tute))
where Tms(% i# 3 homogeneous polynomml
oY D N AL 8
&\ Ayt =2k 1ot

which is >0 for ]« |20, and s is a complex number for which

k 2.7.2
Res <37 {2.7.20)
Tt snggests itself that the function g(y; s) might also be holomorphie
(that Is, complex-analytic) in the parameter ¢ in the half-plane
(2.7.200, and this is not only corroct but easy to prove. Altogether we
will have in the next section a rather general theorem from which we
will deduce at the end of scction 2.9 that the function (2.7.19) is
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holemorphie in s and C%in (y,}, for () %0, But theaetual valyvticity
in the real variables ¢, is & much more speeific proposition and the
proof will not be reproduced here.

2.8, Zeta integrals

DEriztTIoN 2.8.1. We say that a function Sl w) ds sen ol justed
Zeta kernel if it has the follo wing strncture: A

(i) It is defined for (#,) in £, and for complex x in o certdin
domain D, L\

() Itis 0 in a fixed neighborhood |2 <a" of the orluing V.

(iif) Tt is €9 in the variables &, and for any L't)’m’:l‘)l-l']'i'!i'lf_n}. of
integers \ ?

PLE0, 020 \\ (1.5.1)
the function Drvvif(z: =2 +3_J_*'_Jf__("5'i.._f“-} v (2.8.2)

is continuous in (x; s) and holomorphicdqmsy and what. is decisive
{iv) corresponding to each ° in DotiEe exists a neighborhoed
N of 5* and a real number Y=7(N\r=0, such that for cach com-

binaticn (2.8.1) we {1&3&:_dbl'aul.i»Eﬂ;':ﬁl'.}’-m’g-m
apl\p...,,--m:f(x;:'g); o \
_@:_ﬁﬁlk_ = 0(| T |}"' (-1 'T}JJ;'J}= (2""3}
. AN\
as | [ =00, uniformlyfob s in ¥

DEFI‘—‘TITION 2.82. "In the present contoxt s convergence factor 1s
& function §if) o6 the following description: (i) it is defined and con-
tinuous in 0;\?{1%60, and 6(0)=1; ({i) (1) is (9 in 0 < f < o;; (i) we have

\‘ d”ﬁ‘(i) —
AV g =00 s tsw 284)
fiq& fe'aj"‘ery 220,420, 80 that in particular
,\'"\3 W =009 as toeo (2.5.5)
for every g > 0; and (iv} we have
Av3(t)
_El"_=o(t_fp) an 54,_0 (2'86)

for every p>o0 {(but not p =0y,
The function & () =e"

fa 2.
1 # 18 such a convergence factor for every p> (.
Definitions 2.8 and

2.8.2 aro auch that for any e the product
folzss s)=8(e ) f(a; o) (2.8.7)
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is again an adjusted Zeta kernel; and, in consequence of (2,8,3) and
{2.8.5}, this new function and each mixed partial derivative of it is
small at infinity in sueh a manner that for the transform

gl s)=| e f oy s)do, (2.8.8)

o Bx
we obtain the relation

{271-5;!;‘)“1...(2ﬂ-iy;.)ﬁ:--g,_,(-y;s)=[ et Dot f (s ) dv, (2.8.9).
Eg

N ¢

N
for any integers (2.8.1), by means of partial integrations whic h Are
readily justified. But now we claim as follows: \ O

L ¥
.

‘TuroREM 2.8.1. If N and y=y(N) are fived, then for &)
Pt >y R, o (2810)

we have

lim 8_2"""‘-(2’mD-""l“'i’-i'fﬂ{.’.«_:_: 8) d'vxzf e—-zﬂ-i[gc;i;}}j'pl,..prf{a_,; SJ di;_,c,

cin J By B NN

NS (2.8.11)

wniformly in the neighborhood of every poin’tﬁ;, 8).

Prouf. H we write Dt for Dr-m and put r=r+ ... 47y, then we
have WW W clbrauhbrar y.org. in
D¥f (e; 8)=0(e| &) DI fiw: sp E D Ble | () DM fla: (2.8.12)

QN s 5
Now, by (2,8.3), we -}la"§<"’}
Dy 5)=0 (|2[777), |=]|—>x,
and by (2 8 143 thi s funetion thus holongs to L, (&), uniformly in ¥.
Also, d{e eéu'\reré,eq houndedly to 1 a% e->0, and thns our theorem
will follow;, '\K{\We verify
A\ T f | D die |x|) || DY flx; ) | de, =0 (2.8.13)
Ex

-
\’ a0

u\{ormly in &, for r+-s=p, r>0. Now, sinee f{z; 5)=0for || <a¥it
is not hard to verify, by the use of (2.8.3), that the mtegral (2.8.13) is

majorized by
“ ‘ ——8 et) ‘ Eys il df =gy J | 383ty v tE-L gy

However, by assumption (2.8.10) the quantity p=p—y—kis >0,

-4
and thus e”—?'*?ﬂf tends to 0, as =0, for any fixed 4, no matter how
1
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small. Now, if #>0, then, in ex® <y <y, | 8046 | is = ()47, where
() =>0as 5 >0, and thus we only have to verify that
1

stays bounded as ¢— 0, But, due to Tt+s=p, this is o trivial fact, and
kence the theorem,

N
The theorem implies in partienlar that for R
oA

2>+ P24 EY

the funetion (yE+... +ua by )=y |y 9 N (2.8.15)

has a limit, ag e =0, uniformiy locally in (y, s},me'{mi this Jimit is
independent of the special factor (1) employetl \However, we can
divide the fanction (2.8.15) by the factor [ 2% henever 1% 40, and

N\
we thus obtain part (i) of the following t-heo’r@m:

TrEOREM 2.8.2, (i) For any adj%szersg Gl feernel the transform

9353 9) ~f X fla ) o, (2.8.16)
e oy
ewtsts for |y | 40, W\Wé&lrau[I;Bftary_org_i]'l
9y 3)’=lili'n 9elyss s), (2.8.17)
ol 13

AN
uniformly in he ?Lﬁ;%}{-lboiﬂkwd of every point (y, 8), and the Iimit is
tndependent of the particular Convergense factor used in (2.8.7).

{1i) T%e Junction yQ(yj 3 8) fs holomorphic in s and O in (y,), and the
derivations wét?a}r'éspect 10 the varigbles

3 #; cun be performed under the
inlegral sighlin (2.8.16).

(“1.)(*\(6 s D=0y, as {y[>o0 (2.8.18)
for\ez::éry g>0, uniformly 5ty wm O<e<] and in the neighborkood of
\”\@i'ef‘y DOINE 8.

Proof, Ad (i1). The holomer

& consequence of Weierstrags’

[k(x; 8)dv,

Phy in s follows from the fact, which s
alimit theorem, that a definite integral
is holomorphie jn 8, whenever j(
and the integral iz &
uniformly in g, Next,

#; 8} is holomorphic in

Pproximahle by finite Riemann sums loeally

for given e, relation (2.8.8) implies

a8

T D] g (~2mi2,) f(x: 5) dv,, (2.8.19)
a?fl B
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say. But 2, f(w;; ¢} is again an adjusted Zeta kernel, and thus, by part
(1), the function (2.8.19) must have a limit, ag € > 0, locally uniformly,
and it now follows that this limit must he

gly;: s)
dyy
this derivative existing. We can now iterate this procedure, and the
agsertion Tollows.
Ad (iii). The function {2.8.15) has, except for a constant, the valué N’
NS ©

f e~ 2T N A® flar 81 dv,,
3

2N
S

where A ia the Laplacean. It follows from our proof to t}gé\o‘?ém 2.8.1
that, for 2r>v-+%, this function is bounded in s, inﬁform]v for
O<e<land ¢in ¥, but n can bo chosen a.rbltrarlh\argc whenee the
conrlusion, & s
2.9. Zeta series O

The unnatural resivietion mcorpo;'e\tcﬁ in definition 2.8.1 that
S &) shall be 0 in a nenghh’é‘fﬂd&ﬁf‘?ﬂ’]%ﬂ@fmﬁé&ﬂﬁant to be only
transitory, and wo are now going to allow, to the contrary, that it
shall evon be undefined and gj;fgula-r at w=0.

Dermxiriow 2,91, We w’»j‘bﬁat a function f{x;; &) it a (proper) Zeln
kernel if it is defined folg i By, except at the origin =0 and for 5 in
a domain 0, and iF, 1‘{1}.&@ properties (lii} and (iv} of definition 2.8.1.

TrrorEM 2.9, }\1} If j(a,j, §) i3 @ Zeta kernel then the corresponding

‘Zet "\
eta famr’ﬁw\ s 5) =X e 2t ) f(m; 3) (2.9.1)
{a}
exists J‘G:\;?H:O on the torus Ty — Y <y, <} and for s in D as a Lt
o~
\V lim 3 e-2rite s 8(e | m |) flmy; 8) (2.9.2)
2,0 ()

Jor any conwergence factor 8(t), and has a value independent of it
uniformly in the neighborhood of every point (y,s), and i is C° in
Y and holomorphic in e
(i) Also, corresponding fo y=0, the limit
]Im E;a(c|mg)‘f(?ﬁ); 8}_f é‘{s[«‘:“f _;3' d’um (2-9.3)
elal tm |1

cirists, continuously for s in D, and 15 holemorphic there.
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Proof, Ad (1). We take if as known that it is possible to construct
a continnous function () in 0 S ¢ < oc which is %9 in 0 < ¢ < o0 and for
which we have y{t)=0for 0 £¢ £ § and y(f) =1for £ 5 x{{) <co. Hnow,
with the given function f(z,; s}, we coustruct the new fanction

. zf?fﬂxl)f(i*f;ﬂ, tar| =0,
ﬁmw&) l 0, x=0,

thon flz,; 8) iz on the one hand an adjusted Zota kernel, and on thé, >
other hand we have fle;; ) =f{x;; 5) for | 2|24 =0 that in parti c\u@r‘

we have - B - . e
5 emari 0 fm,; )= % et fmg ). O
1) ) A
< 3
However, by theorem 2 4.1 wo have \ fs,
D e e T N (2.9.4)
e,

. AN
where g, is the Fourier transform of J, and 1{\{? apply all propertics
stated for g, in theorem 2.8.2 then our a-'sse‘]fiﬂnn follows.
Ad (). For y=0 the term g¢.(0) necdnot have a limit as 0.
However, if we write ¥

St BRI,

then the left side does hav’a Yunit, and & holomorphic one too, again
by theorem 2.8.2, Now ()

N \ 96(0} = 2 fﬁ(xf; 'g) d?"za
N\ 43
and if we writ:e»fpr’ this
§\ L RRECE rlwa,+~| Felas; s)ydv,.

& irlz|=1
thenf‘!ihe second integral is holomorphie in s for s in. 12, so that we need
{”ﬁ?iﬁmm only the firat integral, and this was done so in formula
(2.9.3).

We now take a homogencous polynomisl Tp(x) >0, for 220, as in
section 27, and with it we sct up any (n(_)nh(]mggencous) PO]}’HOmlal

T(x;)=Toy{e,) + (lower powors),

and wo assume that we have T{x)%=0 for %0, For k=3 it then
follows by monodromy that we can define T'(x;))® as a holomorphic
function in & for 240 and all complex ¢, and for k=2 we make this
info an additional assumption {which is nceded only if P{a,) is non-
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homogeneous). We take some farther polynomial ¢.{x;), say homo-
gencous of degroe 7, and if we put f(w;; §) =@,{;) T{x,)~*, then this is
a Zeta kerned with I being the entire s-plane. Therefore, theorem
2.9.1 implics immediately parts (1) and (ii) of the following theorem:

TueorEx 2.2, (1) The funcfion

Eappe 8)=1m ) e 2riem dle | m ) Qf(m’}
o o0 [} 1 (m'j:'s

exists, for y= 0 on 7'y, and is an entire Jfunction in s,

(it) The Dirichlet series 0.im) Sy
e WA NS ©
2 "¥3' ={(s) W
L} (x.a) N
and the associated integral \: '
J @) gy = H ), v (2.9.5)
I.-.I!l‘éll'(xj}' x.\\,:
being both absolntely convergent in the right ?galjlﬁmne
Ress a7 (2.9.6)

24,

W \af.fij:}raul ibrar _01'hg_ in
the holomorphic functions definedby them in this alf-plane are such
that their differcnce has an aulylic continuation info the entire plane,
thut s, :

(;’(Q'\—&H (s} =cntire function.

(iii} Taken Se-p&-{qlé@g g, the functions {(s), H(s) hve meromorphic con-
tinuations into théehtire s-plane. If T(my) is homogeneous, then H(s)
and (s) have (B host) one simple pole ok the obvious point

7\W

P\ _rtk 297
Q) ST (2:89)
e
N L [ QL s Exlde
@ residue el il A LA (2.9.8)
\QZ sd 2% ) s Tonlkss ooy By

If Pm,) is nonhomogeneous, there is first of all again a simple pole at
the sume point (2.9.7) with “the same’ residue (2.9.8), where Ty, is the
highest part of T'; and there may also appear other poles, all simple ones,

at the points
TR 1,2,8,4, (2.9.9)
2}2 » El b 3

which are placed at egual distances to the left of the first one.

4 BHA
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Proof. Ad (iii). In the homogencous ease we have in the half-plane

(296) w0 frbke-l Q {f'—'
H E=3 J——F—P dﬂ > d {82,
@) jzlﬂm o Tl

and in thiz product the first factor Is (2hs—r— &)1 and the sevond

is an entire function, which gives the coneclusion.
If T is not homogeneons, we put

Py

T:T%‘{“Pgn—l:Tzh(l“’f‘_,u‘f .

) 7 A \ ¢
) oA

and if we substitute this in the infegral (2.9.5) we obtaingapirrst

formally,

Qr( 4 -8 2;3 1 ..( 3
H(s)= g,
(S) J| FIES ‘{TZI& 9;20 ( ?3) Tﬂ m\\

kb
= E ('_'S) L l??_‘?ﬂn ! .
n=0 % 7’5'-",-:\,:(-'-;1 N
Now, the nth term in this sum is of the kindhjust discenssed, witl ¢ re-
placed by s+, and @, replaced by @, P§,,and since the last expres-
sion s an inhomogeneous polynomml;of degree = (2h—1)n, wo see
that for >0 the term hag at m ¥ a1 lgi_gqlﬁw at the points

w W dbraylbrar
r+kdn
- 2; ’
and is holomorphic ct\-l\ermse. Finally, corresponding to any bounded
domain D of the iplahe we can find an M such that on putiing

’3‘}?;‘&1)—5 Mo\ P

PP S zag v
*’L T -n‘:(}( n )( Ton Bl )
.“\‘~

the ;‘Q&ihjder [ i) Ry (z;: 8)du,

& Jee| 21 ?13

8-} n~=

0Ey<(2h~1)n,

S

Wﬁl be absolutely wniformly convergent for s in D and thus will be
\ holomarphie, From ail this our assortion follows.

Finally, returning to inteprals instead of series, we take a funciion
$(£;} on 8, as in theorem 2.7.6, say in %), and we pit

flogs 8)=| 2o ¢(£))

with any real numbers @, b0, and we consider this in the half-plane
a+b. Res> —k for which the transform

J‘ g2l ) e‘—s|ﬂ’:‘|f(xj; 8) dvx
Ex
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iz definable, With our previous function y{f) we now put

Flgs )= xl] 2 ) (@5 )+ (= x(| e Mf(2s; sy =f e 8)+1%z 9),

and then put 7 s: ) Zlimf e ) gl Pl ) dy, (2.9.10)
e 10J Eg

for r=1,2, Now, g4{y;; ¢) falls under thecorem 2.7.6, and is therefore

£ in 7 andd holomorphie in . For the function g%(y;; 8) thiz is, hows {\

ever, likewize so, simply because for this function the integration p;%

(2.8.10} extends offcetively only over the unitsphere |« |£1. The[:e&\'é;

the function ¢! +¢? is likewise so, and this proves a statcmergt?fﬁtde

ahout the function (2.7.9) near the end of section 2.7. <\§
'3(/
N
"4
4
o
O
O
o\ d
As:;‘

o\
™y
www dbraulibrary org.in
~ ‘g"
™o

<
gxff\}
:\
" t\"y:s.l
Y
N
N\

1-2
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CHAPTER 3

CLOSURE PROPERTIES OF FOURIER
TRANSFORMS

Wo will now present an analysis of the principal closire progurties of
charscteristic functions in general, and for those of (mdinitely) sub-
divisible processes in particular, and deing the latter linme «iately iy
E, for general k will roquire a rather elaborate sctting indedg Cand
such simple functions as are efix@ and 1 —eos (a2} will [ mﬁhwd
by more general ones {which we wifl term “pseudo- nhcu\wm T+ and

‘Poisson characters’ respectively) for the sake of gre; L\‘l(,I‘ Flarity, wo
hope. O

3.1. Pseudo-characters and Poisson charac\grs
Durrsiriox 3.1.1. A function

. ,\‘

KU 2V = (% 0o 203 Py, ) (3.1.L)
is & pseudo-character if (1) it is defined ahd continuons in £y = &5 x B,
and is bonnded therey, ww. @R{&ulb?rg Mﬁf’g in . (3.1.2)

(i) for (x)={(, yla; ) s a com;tant in x, but not =0,
\;3(0 )y =c,%0, {3.1.3}

and, what is decisive, (1\1‘1.) ~ve have

llm Ky ylog, ando,=0 (3.1.4)

Yo e
for every K ELL@ ) *
THBOR'E!.I'&I 1. The class of pseudo-characters is closed under witform
convergenct in B, except for property {ii).
Tufaet, if (3.1.4) holds for a seguence y, having a uniforn limit o,
thén it also holds for y,.
\ } On the other haund, for fixed bounded v, if (3.1.4} holds for a
sequenee K, for which || K, — K |j—{, then it also holds for K. Now,
step functions on the ﬁmte intervals I ,: «a

s Sas by ave dense In
Ly{#,), and hence the following statement:

Taponem 3.1.2, 4 bounded continuous function y(o; #) fulfils (3.4.4)
if we Aouve »
lim J wloc; %) do, =0 (3.1.9)
Lol J Iys
for all finite multi-intervals,



CLOSTEE TROTPERTIES OF FOURIELR TRANSFORMS 53

In particular, we have

* & ih i Ty iaiws
J el gy = }] e
Tan §=1 w;

I

-eibm__‘eia:r| Z[b rl|

and it follows from . .
i 1+ [ x |

that {3.1.5} holds, whenee the fo]_lowmg statement:

Tinoney 3.1.3, The funciion e®=® {5 g pseudo-character (R-i-e-mamz,— \
; )

Lebesgue lemama), O\’
Since ¢°4% 4 {5 also a pseuda-character, for any A,we may alsgr atate

as follows: \

TurorrEM 3.1.4. If Bt} in —o0 < < o0 with B(0)+0, as”a. s
T ¢, eitmt > "‘\ (3.1.6)
{m}
with Aat0, Fle,| <o, ,.'\\“
() Nt

or ¢ uniform lmit of such swms (Bokr abn;rsfx periodic funclion with
Ay 00, then the function
vla; @) L‘B‘ra*;'.my“bﬁra&yzoag in (3.1.7)
Is & paevdo-character. \y
For instance, 2 cos (o, ) =i IJ—}-&“‘(“ # iz a pseudo-character.
DeviwiTiox 3.1.2, A aP};mson eharacler is a function Qfx; 2) in
£ x £ of ihe follo winNeac ription:

(i) gga By =ey(1— vl 7))y 0> 0, (3.1.8)
where y{a; x) 1%,'\3- pheudo-chalar:tcr, and y(z; @} is real valued, and
:"\"~
AN Qa; )20 (3.1.9)
.'\ )

and d&@ 0(0; @y=0forallz, and @;0)=0foralie. (3.1.10)
O i _

(i) The function g(x}:J 3 xydeg (3.1.11)

1411

is strictly =0 for =0 (and not only 20 as (3.1.9) implies) and
Wat; &

(iil) the quotient  Plx; x}E?;Tr) ), 20, (3.1.12)

it bonnded and uniformly continuous in the variable the point set

_ 0 |a|<ay O<|z]=1 {3.1.13)
Jbl' (‘\Q}\ Oﬁu = O
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Importgnt remark. We do not assume that (3.1.12) is uniformly con.
tinuous in (3.1.13) as a function in (e, ) but only that it is yniformly
continuons in 2, uniformly in @, For k=1, for the classical function
Qo x}= (sinax)® and for similar ones the guotient: does happen o be
continuous in {z,z) simultaneously, and all preofs, known to this
author, of the structure thecrem for suhdivisible processes make
full use of this simplification; but for & = 2 this definitely ceuses to be
so and a more systematic approach similar to ours must be sought, ¢

We note that in (3.1.11) and {3.1.13) the unit spheres could, bé
replaced by others with fixed radii, equal or not, and that, o e
other hand, the congtant ¢, in (3.1.8) could be put equal to 1, which in
the reasoning wo will frequently do anyway. N

Next, if wy{#) iz the ‘indicator function” (ch aract-erim{(: sot funetion)
of the unit sphere | #] £1, and if, on putting ¢, = I¥W¥e write

o) = f ws(BYL — x(f: =)
K N\

then we obtain gl = ¢y — plap v (3.1.14)
where ¢, >0, and the function R\ :
www . dpraulibgary org.in
pla) = jb O (s ) s
Er

tends to O as x| y:sleﬁnition 3.1.1. Therefore, in connection

with property (ii) of {éﬁiﬁtion 3.1.2 we obtain the folowing further
property antomatieally:

{iv) Yor any}i\'ﬁe& 7 >0 we have
Rooa M, <glz)< M, (3.1.15)
for | 2 with 0< M, < M, <o,

T;HLOREM 3.1.5. If B(f) in —oo<t<owo is periodic or Bohr almost
mperivdic, if it is non-negative and cven,

B(t)z0, B(-#)=2B5(), (3.1.16)
and if in o neighborhood of t=0 we have

Bt)=cy | t{m+offt|™) (3.1.17)
with ;> 0, m> 0 (m not necessarily integer), then

. Qs 2)=Bloy @y 4 ... + 2,2, {(3.1.18)
18 o0 Poisson character.
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Also we then have g(z)=cy | w ™ +of |z |™) (3.1.18)
for | @] -0 and .
Gy

Pli)= 2 o |+ ok L|l| P w),  (3.1.20)
»

where P*(a; w) is continuous tn (o, x) for a€ By, w0 and

lim P*a; 2)=0 (3.1.21)
| &]—0 I\
-unifbmn"J in | o) £ ag for any o> 0. A o
Proof. For an almost periodic B(f) there exists the mean va!};g \J)
1 (T \
¢=lim — [ B(t)dt :“’s
Fose 4 ‘

which in our case must be =0, and if we put B(f) Gfi\—B (£)} then
¥l 2= Bylogy oy + ... o6, i3 & pseudo- eharactcr first, of all,

Noxt, if in the f-space we introduce pelar ¢ w@}dlnates (spherical},
and if for given vectors (z;) and (f;) we dehoie the angle between

them by 7, then wo have

\ 7
- * e

3, x) | de =J ]~ {cos 8™ dv
,,I-'J¢5'|;--;1,|{Jr ) A ;yf{mﬂ bL aujl blaryotgm f
=5;1?'I'“‘J~ Y| Bim. | cosd [mdug=c | 2]
R E
and therefore also, if ()& 0, '

N
,[rm o(j(faa) ) | dus=olt £[™),
: {[(“’M will

which prov m,(ﬁ.«l’.iﬁ} . Finally, an casy discussion of - BE

prove 3,@4’}

3.2, "@‘Seudo transforms and positive definite functions

\—ﬁ take the set of all continnous complex-valued fanctions in
By {«;) and wo define as follows:
DrvINTTTON 3.2.1. A sequence {i7,,(2)} is called P-convergent {towards

its P-timit), in symbols P
(o} = (@), (3.2.1)
if we have lim ()= () (3-2.2)
f—w 00

uniformly in every compact sphere
0<|a| St >0 (3.2.3)
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A get {{a)} will be caﬂed P-closed if it contains the P-limiis of its
BOQUENCes. The gef of all continuous functions is P-closed anrd there-
fore to any subset S={yr{)} there corresponds a smallest P.closed
sot § containing it (‘the P-closure of §7), and it is easily scen that 8
arises by adding to 8 all the P-Jimits of its sequences.

DerisiTion 3.2.2. Given a fized pseudo-character, a function ¢{a,)
will be called a pseudo-transform if it can he represented with some.
Fin ¥+ in the form

b= ¢¥(a) = f xle; ) dF (). (24)
Er - .
Obvicusly, ${x} is bounded, \ O
[ o) | < 3, i F 1 A\ (3.25)

L ¥
and is continuons in o although perhaps not unjfo"i*}lly continuons
in K.

If we are given a sequence " :’,\\“Q
bnler) = J'E Rl o) m@f (3.2.6)
then $.(0) = coBNE,) (5.2.7)
implies that we have « “!\v,ﬂﬂm@llﬁlgwiol gin {3.2.8)
whenever 2 N (0) 0 =M (3.2.9)

and also if 2 sequence &.w converges a.e, and (3.2.8) holds, then the
BEQUEencs Converges 1dedly a.e.

If the sequencd B}, is weakly convergent, then the sequerce ¢, (x
need not conyerge at all, but if ¥, is Bernoulli conv ergent Lo F, thc 1
(o) is - e(mvergent fo

,s\“ olo) = f x(e; ) AFofz) (3.2.10)
(SPG”]{?mma 1.5.3). B

Q ™\ 'THEORFM 3.2.1. (i) The set of psewdo-transforms is P-closed. Also, if
@ sequence (3.2.6) is convergent at all points,

Palo}— () (3.2.11)

and if pla}is continuous at the origin, then

Bul) > 92) (3.2.12)
and F, is Bernoulli convergent.
(i) If (3.2.11} holds a.e. and also (3 (3.2

holds, then F,
weakly to Fy and $(e) = polct) .. 9) 5, HhEN converyes



CLOATRE FPROFPERTIER OF FOURIER TRANSTORYS 57

Pmof The to (‘3 2.9), and henece (3.2.8), the seqnence F, has a
weakly convergent subscquence. We denote the lattor by F and its
limit by Fy, and we introdace the transforms

Pla) =f Xz eydF(x), 7=0,1,23,... (3.2.13)
With a fumily of kernels {£ ,{z,)} in L; we introdnee the funetions

Prn() = ’ Hplo— Y gl Bydes,  xale; @) =fKﬁ.(05_ﬂ}X(ﬂ; zydvg,, A ¢
c,' &Y
which are connected by O

Prnlet) [XR(“ x)dFy(x). “( ™y

Now, by the very definition of a pscudo-character, X}E}J‘ >0 as
fie| =20, uniformly in {3.2.3), and thercfore \

Iy ’:1\
$rrle) > Pop(a)- o\

However, if {3.2.11) holds, then QO ¥
lim ¢nle) = hale) = | N ) 98,

77 00 WO glt)rauhbl ary . org.in
h I " 4 -9 X
and thus we have Pop{o?=Prla)

Letting B> o0, we henee obIMIl by theorem 1-1
\\ bale)
at all points where .befc'h functions are continuons. However, ¢ 4 () is

continuous by cofittrtetion and (=) is continuzons at «=0 by assump-
tion, so that, \X:“C\ have ¢ (0)= lim ¢,(0}). By (3.2.7) we thus have

Ry
FyE, )= h?}l" "(K,), and thus F,, is even Bernoulli convergent and
&\ ﬂ—)oo
£ T\. N . ’
thesefore ¢n(“) - Goltt) =

3
No¥, by oxplicit assumption, the cnfire sequence ¢,{a) is convergent
to (), and by what wo have just proven, any subsequence of ¢,(ct)
must contain a sub-subsequence which is P-convergent and this
implies that the cntire soquence must be P-convergent to begin with.
For the second part of the theorem we take any continaous function
C(f#) which is zero outside a compact set and obtain

fow) $306) dug= f OO (B dug,
and thus ¢,( )= ¢(/5), a.e. as claimed.
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Theorem 3.2.1 applies in particular to transforms proper
gb(a}zgﬁF(ch: f e trin 2 g By, (3.2,14)
v B

and for these the following property is supplementary:

TaBOREM 3.2.2. For e V+ e have

|7l +h)~ ¢7(2) [2<2 | F|. Real part ($F(0)— g F(R), (32,150
and, more generally, for Fe V, if Fis the absotute value of ¥ and § s is

'\

transform then we have

N\

[Px+h)~g(a) |22 1 F | Real part ((0) —&(&;5}ﬂ’}‘: (3.2.16)

7 }’
Proof. | ¢la+h)—p(a) 22 ( f _ [eemine ] [aif,?«?\)

y x.\\l.:j_h 2
=i sina(h, & (_-F)

and by Schwarz’s inequality this is

§4f (sinﬂ(h,x})%f’*.l dﬁ?‘é‘nﬁ!f‘,lz-{1“"'0*"'2”@’“’”@’
By W, ulibrary orggn
as claimed, <

TuroreM 3.2.3, In or@e?;\tkat @ continuous function B} be pre-
sentable in the form (3.2, L) WithF e V+ it is necessary and sufficient that
# be positive definite Jn the sense tha we have

&~ ¥
O X gerap 5y (3.2.17)
\\" 7 a=1 '
Jor any MS@E?; MANY points ol g2,
numbers gy, ..., py.

Proof.” For an integra) {3.2.14) the left side in (8.2.17) has the value
40\ W/
) ¥
\ 2 Py e tmilal, g
which is indeed =1,

(=1
Conversely, if we start from (3.2.17), then using it for two points
{e,0yand arbitrary complex nimhbers 8,0, it follows that [ $e) | = (0},
80 .t-ha-t Pz} 15 bounded, and thig being so, the ‘discrete’ condition
(3.2.17) implies its ‘integrated’ counterpart

fgkakgﬁ(a:ﬂ)p(“)p(g}di}adﬂﬁ__;:o (3‘2.]8;]

oY in B and any complex

!zdF(x},
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for any pla) e Ly (E};). For fixed » and >0 we put
pla)= e—2elal? g2rilan )

s0 that I fe Zefia|2+|ﬁi2,]¢(a_ﬁ) almilg—4, ) d'b‘ad‘-b‘ﬁé(),

W

and if we make the change of variables (in vectors)

o—pf=y, o-+f=9,
then thiz implics ®
. ¢\
| ( e—eld 'Ed-v,g) eV (y) e2ritr 2y, 2 0. O
W Bty Bk o
This means that the funetion @, (y)=e=#l¥d(y), whiefjt tor £>0
belongs to L,, has a non.negative (anti)-transform, anditheorem 2.2.1
implics thal ¢,{z) has a representation (3.2.14). \Bebting >0, this
then also applies to ¢{x) itgelf by thecrem 3.2.18)

Tho reof just completed also implies t-hg@ﬂowing gtatement:

Toeorey 3.2.4. If a bounded mr’aswabls:fwfnction d(x) satisfies con-
dition (3.2.18), then it differs from a contmuouspa&ztwe da_ﬁmtefunctwn
on & 3ek of measure zero.

www.d‘br.auhbl ary.org.in
AR
3

3.3. Poisson transforms .

DyrmxrTIoNn 3.3.1. Gwen}a fixed Poisson character Q(z;x) we call
a function (e} a Poigson transform if it is continuous and can be

represented by an mtetrraJ
v{a; f Qlas; @) dF(w,), F(4)z0, (3.3.1)

where tlnn set 0< fa | < o0in B, that is, the sot which arises from
E, by dét Ktmn of the origin. (For a description of the integral see

Qet‘tmpzﬁ 1)
\P,EII RORuM 3.3.1, (i) [f an integral (3.3.1) is finite on an a-set of positive

measure then we have o«
f AF(x) <o (3.3.2)
| riErg

Jor some, and hence every, vy > 0. .
(i) Tf the integral (3.3.1) is bounded in | B| S 1, or only if

f HAUP <, 3.3.3)
|81=1

-

then J g, dF(z) < 0, (3.3.4)
2
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or what is equivalent with of,
I. gy dF () + [ dF{x) <, (3.3.5)
Jsg Jlal=1

when S, ={0<| x| 51}

(i) Conwversely, if (3.8.5) holds then r{z) is finite and conlinuons and
thus a Poisson transform.

Proof. 1f({3.3.1) is finite on a set of positive measure then thc,rr is ah,
N>0 and a Bovel set 4 with 0<#(d) <0 such that yr{z) 2N fh{

aed. Now, by definition 3.1.1 the function ¢ \
xev={oupyuips o= | xigi 21ds O
o Ex m'\ ’\."
tends to 0 as |z |-»oc, and thus we have \V

#

. cor \4
No(d)z f y'r(ﬂ)dwj (l QB; x)dvﬁ)dwéj [o(A) ~ xie)ide,
A Byl 4 E

N -

»

= [[ ¢ {ﬂ(A)—x{(.):)tﬁv"'——)—‘%E"(A)j (i),

for rq sufficiently large whiel %’L‘%‘tiéh’pm . 8Pk, (11} follows obviously

from
duw f )k 3.3.6
J.m O @‘) V= (%) (3.3.6}

by part (i) of dehmtlo}é 1.2, Finally, if in B, we infrodunce the sel

funection (4 j g(x )d#(x), then (3.3.4) means that G{#,) <0, and,

on the o%ef\hand we can write W{f) = J P oy dG{x), and part
L(

(1i1) fo]]dws from the properties stipnlated for P(#; x) in definition

3. 1208

x“ﬁé are now going to make statements on (3.3.1) in case F{4) is
zero eitherin 0 < |z{<lorin jx|>1.

TAROREM 3.3.2. The Poisson transforms of the form
(e} =J| | x;x) dF(x) (3.3.7)
@ |71

are o P-closed sef,
Proof. Tf a sequence

s~ e a2 (3.3.5)

N
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is P-convergent towards a funetion i(x), then by (3.3.6) we have
F B =M, and since it suffices to show that the limit of a sub-
sequence of (3.3.8) is of the form (3.3.7) we may immcdiately add
the assumption that F, is weakly convergent towards some F(4)
and that the numbers y, =F (K,) arve convergent towards some
murber v, Thus the functions

-

s ¥ dF, ()

Vo~ Walad=

O lwlEl
% e
are a P-convergent sequence, and by thoorem 3.2.1 we therefore hage.y

i ey dF(e), R\

'|mi'>1 \ ¢

7=
and & (E,)— F(F,) =7, which proves the theorem. _ ¥
DErivrriox 3.3.2. A set {{e)} will be called Fiivite if every

sequenee $4f, (o)} in it for which N
sup ') 2 fii' ~~\ v (3.3.9)
L= ¢

Is equi-uniformly continuous in |z | S g iOI EVBI'Y “03‘ 0.
Now, eyuality (3.3.6) and our dasnt}ni;:mt%on% on P %) casily imply

RTATTATY 1" a]“y o1
as follov.s

Tarorexr 3.3.3. The set of Pmsaon, transforms of the form

K\
g()~_~| Qle; @) AF() (3.3.10)
s P-fintte, and for a ,segjfmce
.\\ Jie) = J Qla; x}dF () (3.3.11)
X' S}:
7"\
the "f"-ffftli'irm,@ii:{)) 18 eguivalent with
Q) " Y 3.12
A JS g(z) dF,(x) < M, (3.3.12)
&

\QFﬁ‘i\ITl(}N 3.3.8. We call & function in By (x;) pseudo-Gaussian,
and we denote it by R{w), if it is a P-limit of a sequence of Poisson

transforms ¥
=] Qe adEw #3.13)
with #, -0, s
Any function (3.3.13) is a special case of (3.3.10), and it is not hard
to establish the following theorem:
TeroRuM 3.3.4, The set o f ngsudo-G’ausg-éan functions {R{)} is
P-finite and P-closed.



b2 CLGEUTRE PROFERTIES OF FOQURIER TRANSFORMS

But now we are coming toa key theorem,
ToEOREM 3.3.5. The set of functions

Hio) 151 (o0, (3.3.14)
where R(a) is pseudo-Gaussian and 1 (a) is of the form (3.3.10] 4s the
(smallest) P-closure of the set of functions {HFH{a)}

Progf. Tt is quite easy to argue that the P-closuve of (3.3.10) must
include all functions (3.3.14), but we must show conversely that 4f<
a sequence {3.3.11} is P-convergent towards a function (), then
there exists & function (3.3.10) and a function R(2) such thals O ™

ra{o) = Ric) + i), “ (‘s 3.13)
Now, the P-convergence of (3.3.11} implies (3.3, K2¢), and after
passing to a subsequence if necessary, we maybdspme that there
is a weak limit £(z) in the sense that, again, [Q{a) dF(x) 2 M, and
s
LS

f e(w) dF, (: +J xlfﬂf (), (3.2.16)
& S\
for every continuous e{z) in SRI ;E}f .f,lféawf%;mqheﬁ in gome 1101@2}11101'1100(1

of the origin. Now, th¥¥ih 10810 T,
f &\ dF(:r:) O<r<l,

is monoctonely mcrcaﬁ&g as r decroases, Therefore, it is continnous

for all but ecountaliippmany values r, and if we keep those excluded
then (3.3.16} 1m,phe?s

"\j\ Hee; ) dAF, () L [‘ Qo 2)dF (). {3.3.17)

v PE2EL
We nqv.e for:m o) with this F(z}, and our theorem will be proven if
€ Qhow that the difference
Q Rio)=ilo) = e
is psendo-Gaussian.
For each p=1,2, ..., we can pick a value r, < 1}p such that
f ey ) dF{x) g for jor | £ . (3.3.18)
viO<lglsey P
But;, for fixed r, we can find an index #, such that

| %% w,,a)lﬂf . Qe,z) d(F, ,— )| <
o |2 [=1

| (3.3.19)

ka | =

|
1
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for |o|£p, and from (3.3.18) and (3.3.19) we can put together the

eslimate 9

-R(a)—f Qa; %) dF, | <~
; 0<|z]Zrp P

for | ot | £, which shows indeed that E(x) is a P-limit of a sequence
{3.3.13).

THEOREN 3.3.68. For the set of Potsson transforms {r(0)} the P-closure
i8 the sof of afl funclions {R(a) + ()} {3.3.20)

Proaf. Obviously all functions {3.3.20) are in the P-closure, Takel )\

now conversely a P-convergent sequence of Poisson transforms yr{(x)
and put o (o) = b (o) - (%), where

L 3

0".
!

Qlor; w) 4R (o).
By what we already know, after passing to a subsqquencc, we may

agsnme that the sequence {¥i{a)} iz P—GOHXTergenti}iﬁs P-limit being
of the form w\

~ m

= | Q)R =

.,.S;: Jial=1

R+ | Qo ey dFEn” (3.3.21)
S; »:’
Th‘ . Arellces EA — &Ly : ‘t’ v also P- ] t:
_ Ct:l]ﬂ:'t. reu.cL& g} =1, (o) s ;,“E&ﬂfﬁ?ﬁ?gﬁgﬁfn convergen
the limif being of the form N
J @IOL; x) dF%z). (3.3.22)
Lo En>

But the sum of functions"&&f)’l?l) and (3.3.22) is of the form (3.3.20),
q.e.d, O\
TroorEM 3.3.7. 4iX If Qfoe; z) 1 as in theorem 3.1.5,

"\:t\Ql{Oﬁ: .’i‘f)EB(Cxlxl‘i“---"i_:xkxk)J (3‘3'23)
then the sel oP\pseudo-Gaussian Junctions {1 ()} is the P-closure of the
finite linegs vombinations with positive coefficients of the ‘monomials’,

AN | o &+ oy ™ (3.3.24)

wz’l{%ﬁ%f... +E2=1, say.
(i) For m=2, {R(a)} nre all non-negative quadratic forms

I
E C?Q a’.’ﬂ a"} 3 0'
#1=1
(i) In the representation of a closure element () as a sum
Blo) + () the tao addends R(o), v(z) are uniquely delermined.
Proof. Ad (i}, Tn geveral, if we can put @(a; &) =@Hx; #)+ ¥oe; ),

where
o Qo)
[ & |~+0 Q(x)

N\
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uniformly in |&| <o, for every oy > 0, then in the construction of an
(o) as a limit of a sequence (3.3.13) we may replace cach clement of
the sequence by

-~

Qi a) dF,(x),

R e

without altering the fact that it iz F-convergent, and towards R(z).
Now, in our present case this applies with @z r) —=| (2,29 P but
every integral

* A\
|oy @+ o, | dF (), E&ﬁ.\%)
O

is & P-limit of approximating Riemann expressions cachy ofisthich can
be written as a Huear combination, with positive Batfiivients, of
terms (3,3.24). N

Conversely, the pseudo-Gaussian funotions arda {Semi)-vector field
with positive coefficients, but each term (3.3.240¢ a pseudo-Gaussian,
sinee it is a P-limit of expressions (3.3.25), all Waving identical valucs,
and corresponding to set functions F(Nbeving the value Li#5 at the
point 7, &, .. 7, &, and being zero eyerywhere clse.

Ad (i}, For m=2 these functions are precisely all quadratic

forms =0, www dhraghibrary org.in

o 0] | Zrp

Ad i), If we envisage two T;siqresentations
Bul@dh o) = By} + o),

. N
then on putting Byfoc)s= Byfaty =1f () —tri{a} we obtain an identity

Bl o) = j Bloyw 4. o) dF(x),  (3.3.26)
xt\w E;

in Whic}:\\fﬁ:ﬁ) 18 a homogencous function of weight m, and
Q) FA4)=Fy(4)~Fy4)

N . .

& aget function of mixed sign for which we have

fs; [@|™ {aF ()| +J |dF(x}] < 0. (3.3.27)

| )=

If we divide (3.3.26) by {a|™ we obtain

&ty Ay Bifa,

{lx!ﬁialrﬂ_[ﬂv{z

1 m
oo J Bla, 2 | dF(z) .
| % |a|=8
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Now, the quotient B{{x, )}/ o |™ | 2 |™ is bounded in (x, 7), and there-
fore the firat integral is <e for 8§ 8(e) for all «, But, for fixed 8§, since
B{{z,x)) is bounded, the second integral tends to 0 as [ 2| =0, and
therefore the left side tends to 0 as | o [ > co. But the left side depends
only cn the ratios ¢ e, 1.0 ap, and must be identically 0 therefore.

3.4, Infinitely subdivisible processes

We tuke the same Poisson character fe; ») as betore and thes
fanetion gz} obtained from it, and in addition to that a rea-l-vaihiea“.
fumction ({a; w), not necesgarily o churacter, which iz continupus’in
{z, ), and bounded in » for |« | £ a,, any ®,>> 0, and for whiq};(\i?é‘have

7

- L4

. o\
lim LD _g O 341
| b= Q‘(Z) \
uniformly in [ o | S o x:\\'
TuroreM 3.4.1. The “transform’ ‘\ -
ploy+ifla)=|  (Q; ) ki o) dFe)  (342)
E s\
o braultbrary .org.in
exists for Fld)=0, wglw) dF(x) < oo, (3.4.3)
i

anid for the set of functions (. }2) the P-closure is the set af functions

by }(a) (o) + i (), (3.4.4)

where {R{a)) are thesdme pseudo-Goussian functions as before.

Proof. Tn er.\liér“words, the imaginary parts () do not croate
pseudo-Ga@s{’ian functions of their own, and this, as we will see, is
simply dud 1o assumption (3.4.1), which, as can be readily seen, first
of all géeures the cxiztence and continuity of the imaginary parts (o)
wifthever F( 4 )satisfies the requirement {3.4.3), although this reguire-
menf was arrived ab to suit the needs of tho real parts yr{o), originally.

Now, if we are given a P-convergent sequence W i1, then we
again dissect it into the parts

W ifl= f (©-+4iQ) dF,, (3.4.5)

s
v’fi+'i-ﬁi=fl | (@+iQ)dF,, (3.4.6)
@=1

and the sequence (3.4.5) is P-finitc again, Therefore, after passing to

5 ) BHA
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a subsequence, we may assumc that in 8 the sequence ¥, is weakly
convergent, and we now obtain

Vil B+ [ @rid)ars)
5

because forroula (3.1.18) implies that we have

[ I, o
f GdF, — f‘ QdF,
8 J 55
on account of (3.4.1). This being so, the sequence (3.4.6) is now, Hke:
wise P-convergent, and sn are therefore the real parts %, Therefort,
the sequence F,(4) if envisaged on the closed set |x =1 i.aj:}ei‘nou i
convergent there, towards a function F?{A4), and thus ~‘ ’
P - L&
Vil | @eiQarapO
TS
which completes the proof, NG
In the clagmieal case we ate given, to c;taﬂ:t\x@ ith the combination

Q4iQ =1 —g2milans = Q(bmﬂ(w BE+isin 2m(o, %)

in which, however, @ does not satlsfy requirement (3.4.1), But at the

expense of adding a Imﬁmmmauiﬂmary ougside the integral, this can
be corrected by putting N

Gla; o) Q@mﬁ w, ) —2mlee, Alx)), (3.4.7)

where in (2, A)=a, A 4----+~'53¢113¢( ) we may take for A(x) any
continuons function‘in ., Tor which

\A( _jEt0{=z® as |z|=0

loay a8 |xz|—>o0
holds, \the theor} of prebabilify it has become customary to pub
Al }t—.c 1+4}2|%, and in the theory of generalized Fourier intograls
ambher normalization is being used but no choice has a stochastic
\?Efemnce over any other, and in order to emphasize this we will

eave the functions A,(x) unspecified, although we assume that they
bave been chosen fized.

We are introducing the linear form

W)= £yt (5.4.8)

a1
for any real ¢, (B for Bernoulli), the general real symmetric form

&
??G(a): Z fﬂa‘xpaqgoa (3’1‘9}

=
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(€7 for Gauss) and the general function

F (o) = f (L emtmien) i, A2) AP () (3.4.10)
E,

k

for anv  F(4)20, f ;|x|‘3dF(x)+“ dFz)<oc  (3.4.11)

o8 o |z|=1

(I for Poisson) and we claim as follows:

WwrorEy 3.4.2. 1f we sturt out with the sef of functions O\
()= J (1 — e—2mita.) A F (x) ($412)
Bt N
F(4)z0, F(E)<ow, R
then its P-closure is the set of functions \ \4
() = (o) + () +1,.ﬂ({°@';,\\" (3.4.13)
with all Bernowlli, Gauss and Poisson adde'@;,& fasad‘-.
Also, we have  Pl(a)=o(|«[?) ,.até”:j o |~ 00, (3.4.14)

www.dbraulibrary org.in .
uad the quantities ¢, ¢ ,,, (A} in the lecomposition (3.4.13) are uniguely
defermined. .

Proof. If a scquence ,ij’y\

P f (1~ ¢2710e.) A, (2) (3.4.15)
R B

is P-converger;{tih\ei; g0 aro its real parts by themselves, Therefore
\, n

AV ] |x|241f’,+f dF, <M,
..s\ .,SE : || =1

-

a-gt\l;if\'j\-’é put each function (3.4.15) in the form

N i3 e,ny, +JEI(]. — g2l @) — Dprifer, A)) dF (), (3.4.16)
&

then it follows that the imaginary parts of the integral and the linear
parts ontaide are both P-finite. Therefore, ina subscquence, the linear
parts and the imaginary parts will be P-convergent, and by using our
previous results it is not hard to sce that the #-limits of (3.4.15) will
be the fanctions (3.4.13) with all possible %(x), and ¥F{«) and some
##®(). But actually, we can obtain all possible linear parts 3¥%{(«),
since any term ia; is the P-limit of I/n(l —e~7%i") as n— o0,

E
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Next we note that for |z|£1, |«| =1 we have

|[Q+id] _ .

[ ]2~

- and (3.4.14) follows, by putting
PPa) J’ Q+iQ
0

T ™ Jociaizs ool

|z |2 dF(z) +1_‘f (€ + 460 d F (o)
z|* AR AP
and letting | & | o0 for & small though fixed, L\

As regards uniquene% we note that if we consider the iml\part
cnly, then the addend %{x) is uniquely determined by pa,rt m:) of
theorem 3.3.7, and we WJ_H have to shoiw that if a fune tmn zrr(.y} inof
the form (3.4. 16) and F(4) satisfies the general assw}{:‘tl(::l SN
then F(A) is uniquely determined by this. With dMw»~ector

h=(hy, ... }) .\\\“

we form x\

1 & $,
1 _21[9’:‘(3(1s c by, v Bg) = 20 (00 X 4 gy e )
= O

www,dbr‘ehfi‘i@ﬁérym;gﬂbj e )]

S

L ‘:‘j g2 ilz, ”]( > {sinmh,x;) ]a’}"{a
E}: )

} J=1
N \\ = l‘ ¢=2ilen ) Fh(zg)
ne . J B
AN/ E
whero xt\. B A) =L1 (j;l{sin wh, xj)z) aF (w,),

and by (3\4:ﬁ) we have
Fr4)20, FME <.
L‘\no\sfv we extend (4} from £} to B by assigning the value 0 Lo the
\mgm then by theorem 2,1 4, #*( 4} is determined aniquely in &, and
hence in Ek Now, for any finite number of vectors he={(he, ... k1),
p=1,..,r, this then determines uniquely the sum

WAy = J. ( 2 (sin ﬂhpxj}ﬁ) dF{x

but for an appropriate choice of the vectors 4¢ the integrand on the

right side will be +£0 for #+0, and thus F(A4) itsclf iz uniquely
determined in £}, as claimed.
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SnarNTTIoN 3.4.1. A family of characteristic functions

it o) =f e~tmilmatd B(i; x) (3.4.17)
Ex
Fig; Ayz0, F(t, I)=1, {3.4.18)
0 < {<oc, will be called an (infinitely) subdivisible process (or law} if
thiere is a funetion ¥{e;) such that we have O\
Blt; o) =e W) (3.-4\-‘19
malli=>0,ce k.. 2\
TusoreM 3.4.3. 4 family (3.£.17} is of the form (3 4. 19), efand only
s e Bl =g+ (D 3420
Jor = 0,80 and Bt a)il as  t40; N " (3.4.21)
or, what ts equivalent with i, if we have \ ‘
Fir: Ay# F(s; A) I{@ Ta 4,
deris AT mhgm;’;i;f

and if, furthermore, for t]A), If (t: A) s Bernoulli convergent to the

‘identity’ distribution J whieh is concentrated all af 3=0, and which
can also be characterized by  * G=0G, for GeV (or V1),

Proof. Ttis obv 1011\Eha,t 3.4.1%) does all this. Conversely, if §(¢; «)

is us in the theopemythen, on account of
N4

Bl 45; @) — plr ) =373 ) (Bl @) — 1),
&/

there isw\\ﬁ’tj:pen set 0 < i< f,(x) in which we can defino a continuous
function log ¢(¢; «) which satisfies the functional equation

7o N
Q~ log (r +5; 2)=log $(r; =) +log ${s; &)
for 0 < r, 5< Ho{x). By known properties of this functional equation
we obtain indeed log ¢(; o) = — () for all ¢, « as claimed.

TunonnM 3.4.4. A function y{a;) describes a subdivisible law if and
only if it belongs to the closure class (3.4.18) that is, if and only of, it is of
the form

2‘4 Cplp + E Cpq Py G%"‘J (1 —e 2T 2?”.'(95: )L)} CEF(:C},
P o4 E}i

where ¢y, ¢, F{A) are as described before.
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Proof. {3.4.21) iraplies
i Z 1— (}5(%; ij-)
V{&J) = lim -———~_2-%

8o that yr(e;} belongs to the P-closure. Conversely, if ¢h(x;) 1z a positive
definite function, then

o I,
¢ HHOL- Bl = g0y wrpla)”
raEay

is again positive definite, and thus @${0)—@{x) describes o xlgb(
divisible Iaw, Buat the P-limit of subdivisible laws is dgdlnyub
divisible, and hence the theorem.

i !

el
2N
< %

3.5. Absolute moments mo\""
(-]
For an = ~Emias o By
v dor=| ermmari),
FeV, we have \ &
Al — o —2ihn A
2‘5(05_+ _}__.d&} - [‘ 6_ ]' 6—24’:335 J,d}‘T( }
;) e fw

and since 1jha (e—2mine ISC}E.I EB@PJP 8.},%&“{_5_ 1 and tends to 1 as
h -0, we see that if Wevﬁave N\

[ \%}IdF z)| < oo

then () has & contianotbs ﬁrst derivative which can be formed under
the integral. More genera.ﬂy, for any mz 1 and any £z 1, if we have

x'\ J l (2™ | dF{a;) | < oo,

then thﬂ%’“ ter transform ¢F(;) isin 0% and the partial derivatives

of ordc n X 2m can be formed, under the integral; so that in particular,
for’ Lx 1 we have
\VV 4> h(0) »
= ( — l)naf

d':x2 i

@ AP (), (3.5.1)

—

Now, itisnotable that for F{4) > 0 these assertions can be significantly
inverted and it will suffico to describe the one- dimensional sitnation
only. If we put

2m /i

Samb= 3 (=17 () g,

=0
80 that in particular

AgPler) = hla) — 20(0) 4 p{ —«x),
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then we have
1 sin mca:)"’m

E‘X_,2;_n Azm gﬁ(&‘.:} = (2.5)2”1,]‘_00 ( -

#nF(z),  (3.5.2)

4
and if now we replace the integral byj , for 4 fixed, let &—0 and
then 4 —> <0, then, for Fe V+, we obtain

J ? T 2en P o

2™ Fx) lim o N
— e a0 & 2N ’
whether the quantities are finite or +oo. Thus, if the func’gidz:fgb(a)
has what is called a generalizod symmetrie derivative of ordér’ 2m at
the origin, or only if the corrosponding difference quotimﬁ’.is bhounded,
then the (2m)th moment is bounded, and the f) unctigﬁgﬁ (o) Iz in 27
(3.5.1) holds. Thus, for a characteristic function qt-hér than ¢{a)=1
the (Zm)th derivative at the origin cannot be gci;ts}fﬂr m=1, and this is
the quickest way of verifying that for p >2the function 7P is not
a characteristic funetion. O

All this is preliminary, and it gy»g’gegts that for 0 <p<2m the
refation \a\rw_d.gaf'gé{il l.i brary.org.in

J.m | R F () <0
-0,

¢‘ N

ought to be in some manner “equivalent’ with
3N () =0 @),
and we are goingde show that such is indeed the case, although not

literally s0. s\
We take(in'0 <2 <1 a measurable function Afe) = 0 for which

A ‘.\ 3 1
N [ a2 A (o) doe << o0,
e J o

3 - -
\'sknd if we introdnce the Poisson transform

Holx)= J: (sin mrae)2™ Afe) dax,

multiply hoth sides of (3.5.2) with a2mA{x) and integrate, we obtain
the following conclusion:

TrEOREM 3.5.1. We have

jl P Ao (a) E Af2) dox < oo
0
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pisl
if and only if j Hola) dF(x) < oo,
or what {due to () = Mo | @ | £X,) is the same if and only if
o

—X, e
J +J sool) EF () < 0.
-— A-D

Fromw this we will conclude as follows:

N\
THEOREM 8.5.2. If « measurable function Ma) = 0in 0 <ax sl is mrh

that the function i RN
;;,(:1:}:;1;2"’”.] a*™A{or) ot \ \“}\.- .0.3)
o N\
s finite, and if J. ayda=0{p(x)), as x>0, '\\ {3.5.4]
then we have J J ala) dF ) < ©Q N\ (3.5.5)
\
if and only if l‘ [ Ay Blet) | Mo) e co.
Jo W

Proof. It tor x22 W%%ﬁmﬁgwa:h where

"lim

ir)= (sinmx}zm/l(a)‘d&' fhafit) = J {sin o)A ) det,
Jeo ”\ 1

then we have g Kgfi Aoyde, py(x) 2 M, pix)

b Y
and gt HJ A do My i),
7N "4 a
80 that (3.5 mplies
NV

P

%"" Mpp) < porl} +profa) £ My piir),
and, t‘rlll theorom is a consequence of the preceding one.

1 I particalar, if we pub A(e) =211 fa), where g < 2m and L{x)
m Xy 22 <oois nso-called function of stow growth, and is monatonely
decreasing, then by the theory of such functions, s(x) 13 bounded
above and below by 2{x), and condition (3.5.4) is fuliilled, so that
the following specific conclusion ensnes:

Tanorem 3.5.3. Jf Liz) in XySa<m is a monolonely decreasing
Junction of slow growth, then, for ¢ < 2m, relation

A § =]
J +j Ay dF <o

— 1
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is equrivalent with relation

A
f [ Bam )— ( )da<oo
a}]’-rl
In particular, if for ¢ < p <2 we introduce

Folz)= Q.L e cos 2mada

N
{probability density for a stable symmetric law), then we have A o
(\)
© <o e\
j farian| %, Ke
1 = AN
A\ 3
. 11 {1 <o il
depending on whether |. - L(—) do f . o\
Jad \x \=cc \¥;

whenever L{z) is monotonely decreasing and of slxoy\\growth; and this
foliows from the fact that wo now have LV

—Appla)=2(1—e¢ ad‘) Pt
for gmall oo, Thus, for instangs, dbrauhbl ary org.in
j Sl x)a:?’logja) - dx

\
i3 finite for e>0 and mﬁ\_t{‘teo’ for =0, and similarly for the entire
logarithnic seale.

'n'

3.6. Locally clepact Abelian groups

If we replgce the pair of dual spaces {F,: ( (x)} by the pair
T M k}, a@i if for Fe VHT,) we introduce thc coeﬂ‘i(‘wntt1

\\' \ dlm) = J' e—2mitm, ) ¢ (), {3.6.1)
3 s

then an analogue to theorem 3.2.4 would be vacuous because on M,
every function is continuous and the analogue to theorem 3.231s as
tollows:

THECREM 3.6.1. A seguence {(m)} is of the form (3.6.1) if and only

if we have D c;S(m—n)p(m);(E) >0 (3.6.2)
(o, ()

Jor (m) and {(n) ranging over any finile set en My,
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Proof. As provionsly, (3.6.2) implies

Y e el miPHinsil) diy o p) e trilmon s > ),
(o), (o)

and on putting m=n+p, the sum is

S prtelnatip® el ol 3 ) g EAUBD),
tml, ()
Now, by adding over a suitable number of points £, this will he
.. JAx), where € is a positive number and R
flay=T e P (p) et A
{7 « \/
Thus we have f(#) 20, and on letting €0 we obtain the bﬁﬁ{\hiéi@ n
of the theorem by the usc of an analogue to the closure ‘@éﬁ)rcm 3.2.1,
easily provable. G
Next, since W, is disercte, P.convergence on\ijz 1& ordinary con-
vorgence point-by-point, and the following thegfem can be obtained
by suitablo adaptation of previous syl logisndsy
Taeorem 3.6.2. Ifafamily F{i; 4)e I{—i:(&’? ) safisfiesthe assumptions
of theorem 3.4.3, but an T, then for t}qe’}?’mwier coefficients

— I.a[{]i’;?pary.org,in
é(t; ?TI:} =jb ‘é_fgﬂ{m’w} dwF(f, x} (36.3}
T
we again have :.@E; ) = g=tm), (3.6.4)
where the function y’f{m}o\n’:ﬂi’ « i8I the P.closure of the functions
.@%Ffﬂ+ﬁmwﬂw, (3.6.5)
L) T
FeVH{T,) ,wiv% connersely any element of the P-closure gives rise to
such o furdly F(t; A).
Theclosure clements are again of the form
rN\®
\:\} W’ Yim)=¥B(m) + 175 {m) + P m), {3.6.6)
i

ere yr¥(m) is any form ¢ 2 epMy, ¥i(m) is any P-limit of finite swns
n

of expressions (gymy ... +amy)?, and
?Jf“’(m)=f (L2 90 S my, singre,) dF(z),  (3.6.7)
Tk »

where T =T\, —{0}, and F(4) 20 is defined on T and is such that

J 2 (sinmx,)? dFia) < o

T;;p
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Also, for given yr(m) everything in the decomposition (3.6.4) is uniquely
determined.

But now we consider the dnal pair {#, T;b}, and in this case any
element of P+ ,} is a sequence {f{m)} for which

fm)20, Xfim)<ce, (3.6.8)
{om)
and its transform is  @lo) = 3 o2l fm), (3.6.9)

{ml

H wo view this transform not as a function on 7', but ag a perigdit,
funection on By, then. it is a particular case of cur previous tr&n%fﬂf m&
in E,, for functions #(4) which have nonzero values only\ at tho
lattice points, and thus theorems 3.2.3 and 3.2.4 appl) ['eddlly We
also note that P-convergence on 7 is uniform oonvcrganqe on T, due
to its compactnoss,

However, with regard to infinitely Subdi rigible laws a new
situation arises. If we define them &.u1tably, an the characteristic

functions Bit; o) = z‘ e—2f!*£(a,m}f{_ o)
{1,

have the values e=%(= and a!tu Etlotl %'Tcx ;) is of this kind if and only
if tt belonps to the P- c]obur(‘é\ of unc%ltms I pregen]tduble in the form

(1 T~.<J>—ffrzfcvc. ) f(m), (3.6.10)

()

with (3.6.8) holding. Np }11\16 to the fact that the origin (m)=(0) iz
‘isolated’ in the topologywof M, it can bo seen, by going over previous
arguments, that the.clads of functions {3.6.10) is already P-ciosed azis,
g0 that no Gausgis:h ‘distribution emerges, at least not as g limit of
Poisson funqt-'@ﬁs“, and incidentally, no corrective term of Bernoulli
term is negdled either.

Actually, 'if we view our function (3.6.9) as a periodie function on
E, thep what we have just stated implics that if an exponent (3.4.13}

a\géneral subdivisible law in 7, happens to be multiperiodic then
it 1§ of the pristine form (3.6.10) perforce, and this assertion could
have been so proven directly. But the reasoning straight on {M, T}}
has the advantage that it can be generalized from M, to any discrete
Abeclian group, the result being as follows,

Let & (w) be any locally compact Abelian group and G: {ec) its dual
group,and y(x;z) the character from (¥ to @. If withcach F (d)eF+H{&)
we associate the function

o) =f xloc; z) dF(x), (3.6.11}
&

Q.
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then we take it as known from ‘abstract” harmonic analysis that these
fanetions {$(x)} are continuous positive-definite and P-closed. Alsa,
if we introduce an infinitely decomposable process as before, then the
exponents {¥r(a)} ave again the P-closnre of the set of funetions

P {er) = J. (—x(e; @) dF(2), Fe VHG), (3.6.12)
3

but the sctual analytical representation of the closure class is nob ¢
known to us, although various parts of our previous statements could
be npheld by making suitable assumptions on the character iy f’ﬂtm
xloc; z} axiomatically. However, the following statement. gopwc Wty
through, without additional assumptions being needed. ™

’_EHEOREM 3.6.3. Ifthe Abelian group (Fis discrete, th-a:"a}{{é‘g’ju-i-»*.fr_z-i'.’e-;?e.ti’-y,
if (F i compact then the class (3.6.12) is P-closed as isN\J
In other wordy, if the valves of random varia b‘k}» are the elements

of a discrete commutative group then there Ktﬁw {joint) Gauasian
distributions for them possible.

"

),” -
3.7. Random variables &
www.dbr aulrbral y.org.in

Derinimiox 3.7.1. 4 {Lebesgue} Rdasure space is an ensemble
m\‘{R, %’ v}, (3.7.1)

. . . 1 &J . "
in which E:(z) is a gefeval point set, #: (B) is a o-ficld of scts in R
{with % itself being am element) and »=2(B) is & -additive measuro
on #, 0508 ]44-36 We will call (3.7.1) finite if »(R) <o and
o-finife it thex:exy; in # a sequence B P1CBECB-”C .—R such that
#{B") < o0, p=.2.3,.

If 'u{R)%I then, in qtnchm:.tw contexts, (3.7.1) is a probability
space, and if so viewed we will also denote it by

N

Q ) {Q; #; P, (3.7.2)
with Q=0 (w), 9= F: {8}, P=P(8), P({}) =1,

Dmyryrrios 3.7.2. We call (3.7.1) topological if R is endowed with
a Hausdorff topology and if {#; ¢} are such that for each /3¢ and
cach 9 > 0 thers is a compact sot !y in & such that !, CB and

w(Cy) > v(B)—y. {3.7.3)

We call it strictly topological if every Borel set (relative to the given
topology) belengs to 4,
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'The following fact will be taken as known.
"TanoREM 3.7.1. If B is the Euclidean Ky, for any k21, and B =27,
i the o-field of ordinary Borel sets A, then
(B, o5 v} (3.7.4)

i strictly topological for any o-additive v{A) on .
If (4} is u probability measurc then in the Enclidean case we may
also denote it by F(4) or Fla;) as hefore, and the reason for then

calling it a (joint) distribution function iz as follows, R 2
Take any two spaces 2:(z') and R: (x) and any mapping O

w=f(z') O (8.7.5)

Ny

from R’ to all of R and for any B C R introduce its preimage

N
B =f~1(B). D (8.7.6)
f R

Hnow we are given a o-field 4 in B then (¥ B x) gives riso to a o-ficld
B'=f-4B} in B’ which we will call thc»qenemted field, and it a field
# in B was given to stard ‘%ﬁtﬁﬁ?ﬂi}@?@'ﬂf“ﬁﬁﬁﬂ‘rw will eall (3.7.5)
#+ congizlent mapping of {£', %'} ip‘t-b:{R,._@?}. Furthermore, if there is
given a o-measure v'(B’) on 5&” then

\\‘tB =v'(fB) (3.1.7)

defines a suchlike mea:bln'e on #, with 9(R) =" (R}, which we will call
u generated measu;es,:\a-ﬁd if this measure #{B) was s0 defined originally
on # then we Will"call (3.7.5) a consistent mapping from (R'; #'1v'}

to {R: 4 %%
Take inartionlar for {R'; #'; »'} the probability space (3.7.2) and
on it kyredl-valued Baire functions fi{w), ..., fi{e), and cousider the

mi e t =fi{w), . mp=fi{w) (3.7.8)

from Q: {w) to B (x;). Since the functions are Baire functions this is
8 consistent mapping from {Q; %} to {E,; +7,}, and the probability
measure P(S) then generatos a probability measure F(A)=F (A}
on &,

Derrstrion 3.7.8. The probability measure F{4) thus generated is
the {joint) distribution function of the k funections (3.7.8), the latter
funetions being now called random vartables in this context.

Q"
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Frowm Lebesgne theory we obtain the following fact:

TuxorEM 3.7.2. For any bounded Batre function b(x;, ..., 2} in
By we have

f (fila), .. filo)) dP(w) f By, oy xp ) F (25),  (8.7.9)
Ex

and, more generally, for an unbounded Baire function if one of the fwo
integrals exisls then so does the other and equality holds.

Dermrrios 3.7.4. The integral on the right-hand side in (3.7.9] is{
called the expected vafue of blx,, ..., ;) and s also denoted by A

chon. by, o)} or B(fy o fi} (337.10)

It snits stochastic purposes admirably that in this last n.otatwn the
awarcness of the original probability space (3.7.2) is ke {t{m abevance
and that the substitute probability space (3.7.11)

B s FA) N (3.7.11)
18 being put forward instead. ¢
For b{a;)=e-274=3 gc B, the expected? “alue

»

Ploy) = Efe i) = C—szalfl-l ctarf g Ply)  (3.7.12)
www.db L!l.ﬂ@l ary.org.in
is the characteristic function O

Pla;) J c—ﬁ’“ﬁﬂ- AdF {x}, (3.7.18)
but in the notation (3\@12 3 it pertaing to the randon vector (3.7.8)
rather than the set funétion Fix).
DEFEsTITION 5.7\‘.;). A gequence of random vectors
o<a$-ﬁw) Lp=fHw), n=1,2,. (3.7.14)

is called z:ergem tn probability (or in measure) to the veetor (3.7.8)
if for e»w'e\ ¢ bounded continuous function we have

y{“ B{(h, s 2 BBy, e 1)) (3.7.15)
\ For the corrcaponding char&gtemstm funetions we obviously obiain
Prio) > ?5(05 )

and for the distribution functions we have

B

Fridy— F{4);
but this last relation does not conversely imply that the veotors (3.7.14)
are convergent in probability, sinee distribution functions of different:
random vectors may be identical. What seemingly is true is that there
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exists some {(other) probability space and on it a sequence of vectors
having the same distribution functions and being convergent in pro-
bability. But this converse will not be of consequence to us (although
clogely related stutements will) and we need not dwell on. it.

Next, if we are pivon two probability spaces

{0 {wl); S PY, {QR: (w?); S5 PY, {3.7.16)

and if {3.7.2) is their produet in which

o=[elw?], Q=01x02 F=9lyx 52  P(§xS5?)

N

. = PLS1y P2 £

then for any random varighles (8%). PS8 )\ )
n=hw) e 2=filo"), p=g(0d, .. y;:g;(mz) ”(3‘ 17}
and for any two bounded Baire functions ¢(z, ...,:uk),;g{fyl, Ceo ¥

we have i) 9yt = Eigle ). Bl () S (3.7.18)
in the bcnse that

B V)P f B AP (0} f\m ) AP),

and this gives rise to the following defi mtlon

Drwwrrmox 3.7.8. On W}&ﬁba&mﬂbﬁr%p&pg tiFo scts of random
variables {z.}, {y,} are (stochasticallyy independent if (3.7.18) holds;
and more gonerally if a family offinite or infinite sets of random
variables {z7} is given, where nsignifies membership in the family,
then we call the family m@ﬁéﬂdaﬂt if for any upper indices 7y, ..., 7,,
and after choosing thoae t any finito subsets 277, .. a:k =10,

we have
{ Hg‘}l’ a:l s oees 50 }: 11 E{¢* (3. ..., x;:)} (3.7.19)
y=1

for anv bou 1deﬁ B(,-Lue functions ¢r{x

Given tw tx\ets of variables {z}, {yi}, if we introduce the charac-
teriztic i‘ui’af'tloll ety o0t} of the #'s, the function #{f,,..., ) of
thoals and the function YViy - oos Vs Vg - -» Vieas) O the (2, )8, then,
lnsbhp case of independenco, (3.7.18) implies

¢(d1, ...,Cﬁ- / ﬂl:"':ﬁ X ESTRY “mﬁl "'rﬂi)! (3720)

and it is possible to deduce from theorem 2.1.4 that the converse
likewise holds.

For I=F, if we denote by p(é,, ..., ;) the characteristic function of
the random variables z, =, +#y, ..., #p=7;+¥,, then theorem 2.1.1
implies Bletgy oo 2 P (0, er0s 0) =Pt s ), (3.7.21)

and this relation is of fundamental importance indeed.
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Also if we start from functions

¢(%—)Ef 6‘2”"‘“"%5'1(%),9’f(ﬁ;—)=[ e BTA B 2y ),
gy JE

L3

and if in the product
Ples) ¥ (Bs) =f el G g FYz,) dF(y,)

Bk
we put f;=a,, then we vbtain
(\A
b pia)= | emmamg) ), O
gt AN

and our previous statement admuits therefore of the fo]l@\%ing eonverse,
It three characteristic functions are as in (3.7.21x4hen they pertain
to three random vectors «, ¥, # +y on some suitabléirobability space,
and in fact on a 2k-dimensional Enclidean sphee; as it happens.

Of this converse there arve various gener@li}nﬁons to cazes in which
any (infinite) number of characteristic fitttions are mvolved, and,
for instance, if wo are given a set {g?f%'f[i}}} underlying a subdivisible
Process then on a suitabieh AR E b re ave cortesponding
random vectors x=x{#) for whiph’;;:(-r} +2(8) =2(r +5) is satisfed. And
furthermore, if we have an dééomposit'ion Yol y =1 (o) 495 F (o)
(compare (3.4.13)), then. ;&'e may secure o corresponding decom-
position of the ra,ndo.({\voetors, thus, x(t)=a2f(#) + 27 (£). All this is
implied in a well-Known theorem, but we will have n rather more
general proposit}c\sﬂiof our own in which it will be contained.

2
3.8. Genéral positivity

DEE};;\'-ITION 3.8.1. We denote by ¥ a vector space with real

cooffitents which is partially ordered i the following sense. There is

\&éﬁﬁed a relation X 2 ¥ (or equivalently ¥ < X)) for some pairs of
elements X, ¥ of ¥ such that the following conditions are satisfied:
() Xz X, () X2¥, Y>X imply X=Y, (¢) X2 ¥, Y2Z imply
XzZ, () X=2Y implies X4+Z= ¥+ Z for any Z, (¢} X = ¥ implios
aXza¥ for any positive number @, and (f) every monotone non-
decreasing sequence which iz bounded from above has a Jeast upper
bound. That is, Xi2X,2...2X, <. = Y imples the coxistence of
an clement X'=sup X, such that X, €X' (n=1,2,...) und that
X, 2X"(n=1,2,...) implies X’ < X",
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We further denote by ¥ a vector space with complex coelficients
for which to every element X of ¥ there corresponds a unique
element X* of ¥ such that

(X** =X, (X+ T =X*+1* (oXy*=pX*

for any complex number g, and if #” denotes the subset of clements for
which X* =X, then in ¥ there is given a partial ordering as deseribed.

Wae smphasize that we do not require that 7 shall be a lattice in the
gense that for any two clements a ‘meet’ and ‘join’ ('sup’ and “inf{ )

shiall exist. A very significant nonlatbice space ¥” is tho set af“all”
bounded Hermitian operators in a Hilbert space of any dl:ulenswn if
we define the order relation H, £ H, to mean that H,— Hyis, pO‘%lth
semidefinite and if ¥~ consist of all (non-Hermitian) bourldéd oporators
then.

Theorem 3.6.1 can be generalized us follows: o NJ

THEOREM 3.8.1. If @(m) has values in ¥ thq-%\:&h%' condition (3.6.2) g
Julfilled for all finite sequences of complex nughlers {p(m)} if and only if
A{m) can be represenied by o suitubly dsj_[i?i(’d"Riemann integral (3.6.1)
in which F(d) is a ﬁmway\géﬂﬁ&ﬁr@f’[fpﬁ{%&{}iﬁg?ﬁ whose values are
nron-negaitve elements in ¥ .

It is @ little harder, for geners a:l“l/ V to establish the corresponding
gencralization of theorem 3,28 that a continuous function dlx;) from
E, to ¥ can bo represe ts\i bv a Fourier transform 2.1.1 for a non-
negdtlve interval fungtion F(4) with values in 7 if and only il it
satisfics (3.2.17) or (3,2.18) respoctively, the difficulty being simply
one of finding th.gugjht version of continuity for which to secure the
statement withowt restr leng it unduly,

But forspecial ¥, ¥ of importance the task of setting up the
thf*Ult‘lﬂ‘]&, sometimes guite easily accomplished. For instance if #7,
v A o‘pcratora ina finite d:zmemlona] Hilbert space tth the clements
¢1‘t\|7?atrleca, and thus ¢(z,) is a matrix {@,.(2)}, v, v= M and it
i¢ then not at all res‘rnc,twe to assume that ea(,h (.omponcnt- o) is
continuous in o by itscl. This was so stipulated by Cramér and he
obtained the resnlt that such a matrix function ¢{z,} is positive-
definite, if and only if, component-wise, we have a representation

G onles) = f e T, (z),
Fr

where each #(4)e V(E,) and the matrix {¥,,(4)} Is real symmetric

positive semidefinite for each Borel set 4.
I3 BHA
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CIHHAFPTER 4

LAPLACE AND MELLIN TRANSFORMS

4.1. Completely monotone functions in one variable
We will frequently encounter in £, an integral

p{t,) dpli;) (hJ.Y

JB A

. .. . . L , ONY,
of the following deseription. B is a Borel set in &, @(f;) i3 Baire
funetion on B, usually continuous, and, what is im por‘gﬁ’t}z )z 0;
and p(A) is defined on the Baire sets 4 C B, and isgo€additive and
_positive, p(4)= 0. However, p(4) may also assnife)the value 4o,
but if 4 iz a compact subset of B, then p(A)ixfinite. The intogral
{(4.1.1} always “exists’ as a finite or infinite npinber Z 0, but whenever
we introduce it as ‘existing’ without qu,\lhﬁr'atlon then we wil

tacitly imply that its valoe is a finite OL‘IQ,

For k=1, if we write down the i 1)9
W dbr'au 1ary org.in

Jﬁdp

then Bisthe set 02t Qo}and p(A) is therefore finite for
\ et
A: 058, (<o),

but might hecome mﬁmtp if ty-> o0, If we represent p(4) by a mono-

tonic pomi{'fﬂmuon p{t), then p{4 o) —p(0)=p(B) whether this is
finite 0}%}91‘, But if we write down the integral

™
‘o

o\ " smdo,
0k

s" W

then Bis 0 <t<oo, and p(4) is finitc for e £¢<h, 0 <a<h<o, bul
oAy may - if b—+oc, or a—0, or both. For the point function p(t)
we may thus have p{+oc)= 400 or p(0+)= — 20, or both.

We take the following theorem ag known:

TusorEyM 4.1.1. 4 function f(x) in 0 <2< o0 has ¢ represenfution

Jwy=1 eotdp(t), pld)z0 (4.2.2)

o
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if and only if [ () is completely monolone in the following sense: il belongs
feventinhility cluss C99 gnd

N
d 1

(— >0, 2=0,1,2,.... 4.1.3)

The class of such functions will be denoted by CM. Actually, if we
introduce the difference operator

Apf=flz+h}—flz)
thon it suffices o demand (W
(~1)" Mgy 8y, f20 A

for any Jy>0,..,k,>0 without even adding wntmultv'but the
description need in the thecrem is more pertinent 4o Qm\immedlate
context, \

Duorrsimion 4.1.1. We call » continuous m’gq}fﬁng w=ir(y) of
0y <o into 0 < < o0 completely monotone iffo}é%ory fleye CM, Lthe
funetion gly) = f{d{y)) is also in CM, O

Trrorey 4.1.2. If iy >0”“Cf{,}»fgl)g§0m

W Palymg in
( 1)?’( 1ddrf( )3%0 -—J-, 2} 3:--': (4‘]‘4)
y"

then the mapping x=1rly) is m%plelel‘; monotone.
Proof. We have gz 0 é&'@l dgidy=df idz, dir{dy =0 and this verifies

(4 dngw n=0,1,2, ... (£.1.5)
dy”

$ \ . . - - -
for n=0,1. NEWTor # = 2 we obtain, by induction on %, an identity

dﬁﬂf ¥ d'p;ﬁly}

\} === ” 4.1.6
'..\" Y - dyﬂ_-dx dyn"i_{z) O:IJOD;_ Py dxrj] - y.””' 1 ( }

'"\ .
iﬂ\t{hich all %, = 0and the summation extmds overp, =2, 1,20, ...,

PO, po+p +...+p,=n with v arbitrary. Relations (4.1.3) and

(4.1.4) imply (4.1.5) as claimed, .
There is o converse theorem that a eompletely monotone mapping

must satisfy (4.1.4) and we will prove it in the following version,

TuEoREM 4.1.3. Let f(x) be O in <z <0, let
Fx)<0  in some interval O <x<zb, {4.1.7)

and for n=2let  f)=0(f'(z})) as x>0 (4.1.8)
6-z
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If iz € O and riy) =0 tn 0 < y < o0, and if for every v = O the function
guly)=f(wir(y)) belongs to CM, that is,

(— I)”dng;(“’ 24,

n=0,1,2, ..., (£.1.)

then x=1y(y) is a completely monolone mapping
Proaf. We have by assumption (4.1.9)

< — dg“_,‘_if dif N

= dy d,nu(jfy’

and by assumption {(4.1.7} we have, for fixed y, \ N
df A
— w0 <
Tn w > ) %

tor sufficiently small u and w=w¥{y). Thereforp- «?y dy =0, which
proves (4.14) for n=1. For # 22 we have y

g, (y) 7 \d
dy™ N\

@ % ¥ L
| L E sy San LWV]‘

d.j‘ dyn i-"rlfiﬂ LY ”u dxPy 1 d’_‘/pﬁ+1

0Z(—1)

iH

.n
and if for fixed y and smiall % 5% eﬁiw et rou%ﬁ. by —dfideuand then
let -0, then (4.1.7) and (4.1 83 will lead to (4.1.4) as claimed,

Turorem 4.1.4. If yfyPhsatisfies (1.1.4) and (y) >0, then ¥r(0+)
extsts, and we have a\@réaentatwn

¥iy }w),r(uﬂ rl - dolt), o(d)=0, (4.1.10)

N \ 7 I}
80 that 0180\/@ J=toFey+ |  (L—e)dy(d), x{4)z0, (£.1.11)
Jo04
u,kem .§ .
WO=PO0+), e=al0+)~a(0), ot)—o(0+)=] dy().
'»\ $ o
@ 2d {4.1.12)

Conversely, if o function yr(y) in O<y <o can be represented in the
Jorm (£1.11) with Co=0, e 20, then y=1i(y) is a complelely monotone
mapping.

Also, the integral tn (41,11} is o(y) as Y~ oo, and the representiiion
8 unigue,

Proof. Relations (4.1.4) imply that (1) e CM, and therefore we

ha.ve o
wy)= f e tvdo(t), o{d)z0,

L]
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and by ¥ubini’s theorem we have

N a—at_ p—tx
?f’f(y)-*,-i"(e)=f e—---t_{ da(t) (4.1.13)

for{) < e<y<o0. Now, the integrand increases as € decreases, therefore
we: can fet € [ 0 in {4.1.13) which leads to (4.1.10).

Conversely, if we arc given (4.1.11) and if we denote the integral
by (y}, then we put i (y) =1 (y) +1r.(y). where

N, ¢

¥y =f {1 —e")dx(t), 3 N,
o ReAL)
o= [ a=emaze, A
i ' m'\‘\"'
#nd exainine the two parts separately. We have v

n=| fdxtPf W),

80 that the last integral is finite. But then e ‘can put
)~ @"P")“EE'E‘ a'dﬂib Y ITEh),
which proves that 1, {y) is m"(\“?dr *Also J_f we write
%é): J; L

and eonsider that £ f{l e~f}is bounded in 0 < § <cc we canlet y—oc
under the 111tcgral sﬁld we obtain i () =oly) as y — 0. Next, owing to

\ﬁf s | A=) dye =y <o
it fo].lo\w 'that we can put
& i . _ © —tu
Ayi=ea— | e~dy(),
QO V==

50 that again vry(y) € CM, and 1¥,{y) is not only ofy) but alse O(1) as
¥--00. Finally, our reasoning implies that we have

(e}

Wiy =e +f e~tridy(f),
+0

and by the uniqueness of the Laplace represcntation (4.1.2), which we
take as known, ¢ and y(4) are uniquely determined and so is therefore

also e,
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For actual applications the following conclusion from the precading
theorems wilt be needed:

TuEoRDM 4.1.5, If iir(x) > 0, then o0 halongs to OM fur eeery 10>9),
if and only if 1" () belongs to CM.

Tn particular for 0 <p=1 the function ¢ bolongs to €31 for
overy > {.

4.2. Completely monotone functions in several variables

If k= 2 we denote by 7 the closed octant 0Zt, < o0, §=1,.. g kynd
by X the open octant 0 <y <oc, j=1,..., k and we are illi‘l‘bihil g

the class of functions f{z,, ..., x;) in X which can be rspr@-;f’nted in
the form

flegy=1 e-=0dp(t)  p(A)z0 ~\ (£2.1)
Jr
where, as always, (2,8) 28t ot huﬁs}ra representation, if
possible, is unique, and this can be dedm?’d\f} om the uniquencss of
Tourier transforms as follows. If we 111’[1"0‘(1110 the complex variables
Zy=m;4iy, =1, ..., k, then the mi»egml
www.dbrauliBrary org.in

f At ﬂdp(ﬁj_—.f e~ s o=l dnl2) {4.2.2)
4 w ST
is abeolutely ul]ifarmly@»nﬁ'ergen‘c in the “tube’

S}}eX —way, <o, f=1, .0k

and there is; a,\hb}omm phic function in Z,,...,Z, whose values are
umque]y d'&efmmbd by those of the onwmal i’unbtlon Flay o)

Now, if {8 choose a fixed point (25, ....#3) in X and vary the y,’s, then
we cgsr'l\write for (4.2.2),

"\’:':; f =it dF(i}, (423)
: J v B
}
where Fidy= e~ B ntt), (4.2.4)
ANT

farany 4 in B, This F{4} belongs to V(E,) and therefore it is uniguely
determined, a.nd sinee, for 4 C 7. we have

plA)y= f o0 0R (),
A

it follows that p(4) is uniguely determined too.



LAPLACT ANLD MELLIN TRANSFORMS 87

Taroren 4.2.1. 4 function f(e;) in an octant X can be represented by
an infegral (4.2.1) if and only if i is O and we have
gt ‘H’fif

(_ l)nl—...—vak —.

iy 20 (4.2.5)
cayr . dan

for all combinations n, =0, ..., 1,20, the representation being unique
then.

Thig theorem will be tukeo as known, and we will proceed to further, |
developments, If for any point (£;) in the point set closure X of ){\Wv‘\

introduace the operator « \J
af o P\
Def=&y .+ s o )
g gn +*0)

then the set of conditions (4.2.5) is equivalent to thegehaf conditions
(—1)*DpDa... Dyf20, n=g&> (4.2.6)

for all possible points £2,...,£7 in X, and this Ele':W phrasing of the con-
ditions has the following advantage. ff wo take any nonsingular
affine transformation a; —mﬁfmrgihg‘amﬂ@rﬁw tmgimposed transforma-

tion ;=X g, u,—which tOg_,(:‘tlJ.Pl Icaxe the inner predoet {x,¢) in-
variant—and if we denote theldorresponding images of X and 7" by
the same letters, then thcicondltwnb {4.2.6) remain identically the
samoe for representing & mtlon f(z)in X by an integral (4.2.1j over T
Also, the new point st X is an open ‘affinely placed” octant, and 7'is
its “dnal’ octant, dhis’one closed, and for X given 7" can be deseribed

ag consisting QE Thase points {=(t,, ..., ;) for which

§ (z,)z0 for zeX. (4.2.7)

S

If n"b fake iwo affinely placed octants X, X, whose interscetion
X,, is nonempty and if in X, U X, we aro given a function
fla) which there satisfles conditions (4.2.6) for all & in X, U X,
then it satisfies them separately in X, X, and thus there are two
Tepresentations .

)= J e dpy(t), weXs, (@.2.8)
T,

f(:r:):f e‘{”'f?dpéft), zeX,, (4.2.9)
T

where T, is dual to X, and T, to X, However, in . X1 n X, there is

N\
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some affinely placed octant X, X C Xy, X, CX,, and for it= dual we
have Ty 3T, T, D T,. Thus we have a third represeniation

-

f(;::)=J e~ 0dpf), we X, (4.2.10)
Ty

but since g (d) in T can be viewed asg a set function in ¥, which
happens to be zero in Ty — 1, and pyfd) as one which is zevoin £, — Ty,
therefore, by the uviqueness property, a comparison of the threg
representations (4.2.8), (4.2.9), (4.2.10) implies that we act-na-ll.}-;}@(c
one ‘joint’ representation NS ©

floy= ( e~ dp(f) N
o Ty

forxzin X; U X, m;\"'

From this wo can conclude that if we are given adamily of affinely-
placed octants {X,} in which any two can befesinected by » finite
chain in which two successive ones m-'erla-p,\'é-ﬁﬁ ifjn X=U_X\_ we
ave given a function f{z,) satisfying {4.2.8),%hen it can be ropresented
by the integral (4.2.1) in which T i 4 intersection [ 7. Also,
T can be defined purely in terms of the set ¥ by (4.2.7), and italways

. i Ty O g, .

countains at least the o¥FY H}?Ta[{l(%m aR(yJw, if the integral {(4.2.1) con-
vergos in a point set X it also tenverges in its convex hull, and the
point set T as defined by 'LQ‘E.T) remains the same. For our point set
X, the hull is an open geti gnd, if it contains the origin it contains the
entire &, and the pgintwset 7' must consist of the origin only, so that
fleyisa constant perforee. If, however, the hull does not contain the
origin, then it idpetlf & connected union of octants, and it is a ‘cone’
in the sensg\d?the following definition:

DEL:{N}PI‘GN 4.2.1. 4 cone is an open convex set not contaiving the
origi;} 'fwhich Is a union of affinely-placed oetanis or equivalently
2 }fnﬁon of half-lines {pay, ..., pa,}, (@, ..., ) € X, 0 < p< oo, We call it

Naproper cone if it is part of an affine] v-placed octant, that is, if after
an affine transformation contred at the origin it becomes part of the
octant x; =0, ..., 5,5 0.

A cone is & proper cone if and only if its dual set T' as defined by
{4.2.7) contains & neighborhood, in which case 7' is itself the closure
of an (open) proper cane. Otherwise, 7' is contained in a linear sub-
space through the erigin, and has this strusture there, or it reduces to
the origin.

Returning to the function f®) we may now sunumarize as follows:
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TemerREM 4.2.2. 4 function f(z;) in a cone X hus a representation
(4.2.1) there if and only if it is O and satisfies relations (4.2.8) there.

Those funetions will be called completely monotone and their class
will be denoted by CM(X),

Derxirion 422, If X is a cone in Ey: {w,) and ¥ is a cone in
Eyy,), k= 1,121, £=1, and if

o=ty ¥ p=1 0k (4.2.11)

is a transflormation from ¥ to X, then we call it a completely monothpe.
mapping if 1, € ), and if for any peints ', ...,4%in ¥, and anyy in

T

Y, the peint in F, with the coordinates N

$%¢ 2

.'}fp=(—]_;|”_D}j1...D?}};y‘;fp, _’p:‘l_,...,k'"‘}\\~

lies in the elosure X of X. Y,

TirroveM 4.2.3. If f() e CM{ X}, and (4.2 D.-i%éi:ompleteiy monofone
mapping, then g =F(1, ... 1) c CH{T )NV

Conzersely, if (4.2.11) s a tm.?[;o-:“mi;tignt@f‘”" Srom Y io X, if X is
a propes cone and if for ea-‘eﬁ}‘f‘eq ; fo?@%g?zbgg the kit X, the function

oL i1 (N £ o) (4.2.12)

i in QM (T, then (4.2.llj’y’%o-r'rexpﬂetely RONCEONE TEPPING.

The proofs, though oﬁi@ﬁé&:dly more claborate, are the same as for
E=1 and we will omit them.

Turorpy £.2.4° }_1'}smgle Ffunction w=1{y;, ... 4) in Y is @ com-
plefpfy m_o-noiou{‘g;%;&zpp{ng f-rgm. Y lothe one-dimensionad cone 0 <z < oo
if and only ,Q\'wé- can put

B vimarSo [ (-t @213
y. \" a i

0\

’wz‘}%e‘cn 20,6,20, 0(4) 20, and U is the point set avising from the dual
U of ¥ by delction of the origin; the representation (4.2.13) being unique
thewn. .

If X is a proper cone, then u transformation (£.2.11) from ¥ lo X is

i Cr_‘)-m],\lgtgly MOnotone ma,p_-piﬂg, ?,f and O?‘dy lf e CRLH p?lﬁ

f (1—e o) dofu)  (£.2.14)
-

.

W =epyt N ople+
¢

where ¢, ¢, are real numbers and euch o (A) is the difference of two

\*

N
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non-negative set functions on U', o (dy=0} (A)—o; (L), snuch that for
ecch (ty, ..., b} in T the combination
2 fpvm Et Cpo T = tncm% 'Jf‘J (} —emth u}} d( E. f_nfhr-:z{'”'])
124 [ . b
s as in the first _pa;rt of the theorem.

The second part of the theorem can be eusily obtained from
definition 4.2.2. As for the first part of the theorem we note that the
cone Y contains an affinely-placed octant ¥, so that corvespondingly$
we have I/ C U, and it is not hard to see that we need only (‘r;ntm‘le
with the proof for the case ¥: {0 <y, <00}, Ut {02y, <} o

Now, a function x=¥{y,) is a completely morwtonc moxp :“mg of

this ¥ into 0 << oo if and only if the I fonctions ~‘
& A\ .
O g1t (4.2.15)
Yy

exist and are & completely monctone function taa‘c\ﬂ“ and we need only
analvze functions of this kind, O

Now, if we are given (4.2.13), then it i?s”;ﬂot hard to gencralize the
reagoning nsad for [=1 and show t-}g@‘tr"i,-’f(g;j) has first pactial deriva-
tives, which ¢an be om,ai;a_qint&umbréfj* OTg.in

i‘ff_chp.f' ety dau),

dy, i
and this not onty implies thivt the functions (4.2.15) are in CHM(Y) but
that everything is agiqucly determined too.

The converse is. 1&.@% obvicus. 3inee the functions (4.2.15) are n
CM(YY we h&v&’&pre&ontatwnn

ol
O~ ':{J—-ZGQ—F f e~ude (u), g=1,..1
"\\w CHq rid )

with eertdm set functions o (4) = 0. Now, if we differentiate this with
;:Qspbc’t to #y and interchange (¢, r) and compare, we obtain

V 0,40 (1) =y, ), (4.2.16)
¢, r=1,...,1, n the sense that

J‘ u.,,do-rz(u)—_—j il {ut) (4.2.17)
4 4

for every A C TV, Yor fixed 7, if we denote by 4, the subset of T’ for
which %, =0, then (4.2.17) implies

’. udefn) =0, g=1,2,...,1
o A
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Henee ‘ (4. ) dofuy =0,

o Ar

but in & we have u, + ...+, > 0. Thercfore wo have

[ dofu)=0 for »r=1,..,1

and from this we can conclude that in (4.2.16) we ean divide out thus:
doyfu} do,(u)

. r=1,.,1 A
e e 7 7 \ \
in the sense that there exists a set function o(4) 20, such that O
l o ‘
[ dﬂ’q(%J :f %adﬁ'(?{-), q= I, ..<,E ,":’.. ’
J 4 4 N\
for A C U Therefore, we havo v/
£l AN/
fﬁ:cﬁ- [‘ gl Wy d’-o’(u{ﬂ (4.2.18)
CHy £

;0. 7(1) 2 0, and if for some fixed ;> 04 57, >0 we introduce tho

fancti
Aneton ?Tf’? -é)\w/ é%‘(%tfﬁb:@d@r org.in
then (q K _Er gt l PV«’(” vy, ) dofu),
Y
and by a judicious apphca.tmm})i theorem 4.1.4 we now obtain
: 3

) =00 Bep [ (e dota),
#N \ Jr

Ifnow we put ='J.a'ﬁﬁ':rary the #y, ..., 7y, denoting them by ¥, ..., 9,
wo conclude t-ha-io{t:lfc* function

N\
A\ p) +f (T —e—to 2y derla)

O e

is finjpeyand since its derivatives have the values (4.2.18) it differs
fr fﬁi’/"f}y a constant ¢,, and since this constant has the value 1,(04)

it 1Y%= 0, as olaimed.

4.3, Subordination of infinitely subdivisible processes
If a completely monotone function in 0 <y < oc

Hy)= { : e dy(t) (4.3.1)

is bounded there, say p(0+)=7(+0)—y(0}=1, and if we introduce
the complex variable 5=y, then the intcgral converges in the
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closed half-plane 0Ly <os, —ov<y <00, and uniformly in every
eompact set of it, and the resulting function which is holoworphic in
the open half-plane will be denoted by u{y}. Likewise, a completely
monctone mapping from y > 0 to 2> 0,

W) =cy + j " ety = ey vl (+32)
0+

can be extended in the same manner inko the closed hall-planc, asean

be seen from the decomposition (£.1.14). Now, for any of our :e}.-

ponents’ ¥(x,) n B, we have Reyr(2,) = 0, and thus we can for m\ N\

Plas) = (), (@33

for which again Re () 2 0. Since Re vyly) 2 0 and vy(#) 1~\\m<1 lvife in

y =10, it follows that we cannot have Reyyln)=0 at angierior poing

with 3> ( unless pyf(%)=0; and if we have Revy(7)& 8.4t 2 boaadary
point =iy, o \

I (1~ costy’ydp(t) = /

o &

then this implies thai the c-additive I unctmn p(A} must be O on overy
Borel get 4 not containing a point t=28ay’, and thus we must have

Imvy(iy') =0 lkewise. WP dﬁy wedny)) =0 implies
for any ce k.. V?(?)[:( )}

TREorEM 4.3.1. If {e (&b 18 any subdivisible process, und if we
Jorm (4.3.3) with any (48.2), then {e=%2} is again such a process, and
we call {{F(z,)} su?)md{m te’ to [tz ).

Alsa, a S?,sbmdmat@ process of @ subordingte process is again siuh-
ordinate. e

Procf. iﬁm\é\ (7; wy=e~"¥ iy an element of OM for every »= (),
we have \

o
X st iz (£3.4)
0
W:lthii ﬂ/(} #) 20, and hence
\ ' emulla) = f el d n(yr ), (£.3.5)
S0

Now, the left side in (4.3.5) is obvicusly continuous in «, and the
integral obviously satisfies the condition

o0 N
f ( 3 e r{aP—ad) pypq) dyy(r; u)Z0

9 \pa=i
if the integrand does, and thus Theorem 3.2.3 can be applied. Also,
the ‘ehain rule’ for subordinstion is a conrequence of the corre-
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sponding chain rule for completely monotone mappings, which in its
turn follows immediately from definition 4.7.1.
We now put

Pl =yt R Lt f=gf R i,
where % is the Gaussian addend as in (3.4.18) and ¥ are the
real and imaginary parts of 2 +¢f. Rolation (2.3.2) Ieads then to

PO+ PR =4y + Revg(ihf 4% +iyd),  (4£3.608
TI:C-I,-’/J—i—InwO(y'fGﬁ—;&“R—]—é” ( f&T}

but since 7H, 17F and py(d) arc all o {Joc|?) as |a| >0, by Thot)rems

7

3.4.2 and £.1.4, relation (4.3.6) can be separated into R N
4 = 1@, LY @ss)
FR=ciyE+Rev, {z,fff*ﬂfﬂ-f-um ! {4.3.9)

All theee terms in 4.3.9 are 20, and Re uo—ggﬁphes also Im v, =0,
and hence it we assume 7% =0, and then WEibe () instead of (e,
we are Ied to the following major concluslzm

THrorEw 4.3.2. A szcbdmw,&leguﬁgm.;wgﬁ@am gaponent aof the form

_yo{a Y+ (o (4.3.10)
is not subordinate to any sub{mszble process whetsoever but ifself.
The ‘stable laws® ¢ {é::*-‘a M fap<l (4.3.11})

are each subordinate tc}lle Gaussian law {e~*1="}, and quite generally
if {etwiad 4y 4 ny Eubdivisible process then so is {e-#@F} for any
b<p<l, Also '{he relations (4.3.5) imply for the jeint distribution
functions %‘ ‘whlutions
4 v ]
R\ \ Flu; 4) =f Flr; Ayd vir; w), {4£.3.12)
0

N\ —
W hme precize manner and range of validity will still be diseussed, and
they state that F(u; A) is a cortain average over the set function
F(r; 4), the averaging weight being ‘d,y(r; u)’. Also, tho averaging
Process may be viewed either as a mixing of coexisting probabilities,
0r as 4 randomization of the parameter # in alternate probabilitica.
We might state though that the stable and similar subordinate laws
are usually arrived at in the central limit theory, and there the objects
of study are families of random variables on 2 common ensemble
{0; 7, P}, and not families of probability measures on a common

ensemble {Q; 1.
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TIOEOREM 4&3 A process (wl{x)}y ts suboidinate fo a Guussian

PrOCess {Q( Z. O %y 2, } if and only <f we have
B, a=1
A

(= cldla;) (+.3.13)
and s-“’(xﬂz] (1 — 08 (a, 7)) f(Q'(2)) e, (4.3.14)
k4

where fly) is @ completely monolone funetion in O <y < oc and (7w s,
the quadratic form tmverse 0 Q).

Proof. By subordination we have L\
(o) = eior) + J (e @)dpld), | (W 3.15)
and by the theoremn 3.4.4 we h a.'\-‘:: ) \"" )
Yl = ) +f (1—cos o) §80F, (4216
K O

and since by theoremws 4.1.4 and 3.4.2 th ’?:%?0 integrals are hoth
of] & {2} we hienee obtain relation (4.3.13pdud also

r;j.P(a)sf (I —~corfzx, z)) dF{z)= [:m“(] —~e ey dp(e).  (4.3.17)
B

www . dhbr auhbi:ary%r g.in
We will now make nse of the formula.

1 — g tQ0) — \'j‘ {1 —cos (o, 2)) e~ Wit gy, {4+.3.18)
!’“{., Ex
where @'(x,) is the Jni\‘rﬂe to Q(2;) except for a faclor ¢, » 0, but since
fleyy) Is completely monotone if fiy) is it will be justified to act as if
we had ¢,=1.5Ngw, if we substitute (4.3.18} int the sccond integral
(4317 1\00&@&1}1 (4.3.14) with
\M .
Q fw)=) e g

L
1“} for this we can write { e~V der(T),
\ ‘3 o B
wal (1 -

where do(r) =G"T'~*‘T°(Zi:-- p(;):l Comversely, if we start from (4.5.14)
for any completely monotone f{y), we can gainback the second integral
{4.5.17}, q.e.d.

Turning to spaces other than £, we first of all note that the state-
ments in section 3.6 can be supplemented as follows:

Tarornv 4.34, Our definilion of subordination and theorem 4.3.1
also apply to locally compact Abelian groups.

*



LAPLACE AND MELLIN TRANSTORMS 95

Lhus, in particular, if we are given any process

B_T’J’fmJ:f efmimal g Fir; x), (4.3.19)
s
and if with oy function (4.3.2) we form the exponents
yr{m)=v(yr(m)) (4.3.20)
then there s « process
~ ) ~ QN
gmwm = | gedmilm ) R ), (4.3.21)
T O\

and in this pmhcular cese, theorems 4.3.2 ond 4.3.8 Hlewise apply. o
Now, our ‘subordination’ can alse be introduced om spages ih
general provided we shift the emphasis from Fourier trs nsforfaation
(which miyht nol even be definable) to (genemhzatmr&\of} the
distributions #(u; 4), and we are going to do this\uéw rather
systemutically. RN

%4
W

4.4. Subordination of Markoff processes,
Derixrriox 4.4.1. Any function y(r; )1 iny 0% < o6, 0 < u < oc which
oceurs in a formula (4.3.4) w i1l he }jfj] led }}]submdmmtor and it will be

raul rar
called a proper subordinator 1f

70+ u)—{(0; 45} 0 for u>0. {4.4.1)

Tororey 4.4.1. 4 f ammm%wiv- in v =0, w204 a subordinator
¥ and ondy if (i) i is mdnbiohe in v and y(oo; w)—y(0; w) =1, and
YO+ 0)~»(0; 0)=1, (11j we hove

‘\d Fyie w)d, s v)=d,y(t; wtw) {4.4.2)
- '?"T\

i the sense thatl \’

*

vlt; a—j—z,\ y(O u+e)= J (y(t—s; ) —7{0; w))dy v(5; )
LT
{ad -ng'e»f-y }, and (i1} for each ry> 0 we have
ad a0
lim [ dy(r; u)=0, (4.4.3)
u b0 .
that is, firm J"“ dolrs w)=1. (4.4.4)
witjo

Also, if (4.4.1) holds for one w,> 0 it holds for all, and it so holds if and
only if v(y) -0 as y— 0. .
P rouf. For a subordinator, (i) is obvious, (ii) follows from

£ uME) g =yl == g—lurvlr(E)
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and (iii} from

1 _,e—huu{l_\'-ru] — [

o0

a

(8 ety dy(t; w) zf (1 — ety dy(t; )

Fu

1y =
= (l —'—-)J dylts u),
& i

Conversely, if (i) holds we can set up {4.3.4), and if we wilie it as
e~ with py; @) 20, then (i1) implies #{y; w+v)=v(y; %)+ 1y 1,
Also

s

Ta T O\
Y w2 [ e d?(i;ﬂ)ée—y"ﬂ[ dy(t; u), S D
0 \

and (fii) implies Hm p{y; w) =0 as v —0, and thevefore v(j, 1fj|«— Wy,
as claimed.
Finally, (4.4.1) iz equivalent with lim g{y; #)=0, 1:1"1}3}- is, wplyy)— o0
f—
a8 ¥ — 20, and this commpletes the proof of the thewem.
Tusoreyw 44.2. In E, (and perhaps jneall locally compact com-
matative groups) the precise meaning of relahdn (4.3.12) is that we have

J-Ek () dxl"(%j\j‘f\}ﬂ = J.Ea'(l :{Li‘:ag[(fr) é)%_%‘*_’}(ﬁ; :L)) dyyleyu)  {$.4.5)

Jor all continuous e(x) which wgg tj'dt"inﬁn-ity or any subclass as in lemma
151, K
Proof. ¥ yiz)e L {H .X(tﬁen, ag Is casily scen, (4.3.3) inplies

~

J yloye Ww}du = [w (f x(e) e—"\"’(“}a’.?}a) (e ), {(4.4.6)
K NS/ w0 Ex

p 3

and (,onvelse]:}\ﬁ relation {4.4.6) holds for y{o) variable and other
entities fixéd)then (4.3.5) holds. Therefore, {4.3.5) is equivalent with
relation\{¢.4.5) for functions ¢(w) which are Fourier transforms of
funetians in Ll{E ) But any continuous ¢fx) which is O at infinity is
mg;rr'rform limit of such ones, and it is easily scen that {4.4.5) remains

lid then,

For ¥=0, F(r; 4) is the “identity’, and not absolutely continnous,
but for 7 > 0 we may huve

Flr, 4) =jAf(r; x) du,, (4.4.7)

flr; 2) 2 0; and if this is so then the tight side in (4.4.5) can be written as

r( Jlors@yefe ,g) d,yir; u), (4.4.8)
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provided i) ) is a pr oper subordinator, Also, if f{r; ) iv a Baire
function in (r, ) say, then Flu; ) is likewisze an integral of a suitable
funetion f{x; ) such that for every % we have

Fls ) =.’ jf(r; x) dv(r; w) (4.4.9)

for sdmost all ; but it does not follow that flz, @) can be also assumed
to be 2 Baire function in (u, ) automatically. Furthermore, apart N\
from subordination, the continuity of F{r; x) at r =0 can bo expr essed

by the condition
Hm | flr; z—y) ely) dv,=c(x) {4\4;1())

7 loJ B Ny

7
{ ‘~

a8 well,
We are now going to envisage spaces in general bu{ 'm order to
avoid o mamber of complications we will genernlidethe dengities
f{r; ) only, and not also the set functions .F(u;.{\l}n gencral,
$
DerFrs 1o 4.4.2. Given a measure spaggayy,

N\

(B 98 v}, WV (4.4.11)
a Markoff (chain) density 1%‘&%}3&1@%&’&%}’(‘5‘1@1’% 9jesihich is defined for

O=r<s<ow; x,yeR and has tho followmg properties. It is a Baire
funciion in (7,8, 2,9) and 2

N

f(?‘,&; x, };b; f f(?.?S; o 3/) dﬂ”'}l:]' (4':[:12)
and f&?*,fs‘; x,y) fla,t; y.z) dv, =f(r.6; 2,2), (4.4.13)

the integral CXLa'\tlllg without exceptions,
We call ‘ka* db‘rlbl‘tV continuous it we have

,s

Q) Lim | fir; s; 2, 3) e(y) dey = o{x) (4.4.14)

"\ ’ sird B
fbxc‘(y) e, where C'is a given set of bounded Baire functions having
the completeness property that for g(y) € L,(R) we can have

[ stw)etman, =0

for all e(y) € C' only if gy) =0 a.e, Cotati '
We call it time homogeneous or more frequently °stationary ifthere
is o Baire function ft; z y) for O <t <0 2, Y€ R, such that

Jir,s; 2, y)=fls—7; %%

BHA
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the new function having the properties

-

Hi 2,020, Jf{t;:r,y)dvyzl (1.4.15)

' Sl w9 fles woeddu,=flr+s; 3, 2), LE4.16)
with (4.4.14) being now

lim f{t; &, ¥ ey do, =e(x). EERY

t}0 p \‘ N\

We call it spuce homogeneous if there is given on B a fixed trymiiive
group of point transformations @’ = Uz of K outo itsclf such tL &

TB=%, oUBY=u(B), [flr.s;Ux, Cy)=f0 ,3\ (L8

We call it (fully) homogeneous if 1t is homogenoou® Bath in time aod
in space. PN
The reader will easily verify the follow iugj@te ment;

TuroreM 4.4.3. Iff(f; 2,9} ts 0 staiwnar‘; rlmsa!y, and if for & proper
subordinator the infegral ™

Fluyopy) ébfan{ﬁi&‘%f LA w) {4.4.19)

is Baire in (u, 2, y) then it ifadyain such « density, and we call it sub-
ordingle to the original gy A subordinate of o subordinate s agein
subordinale.) \\ )

Also, if fit; x, y) &5)space homogencous or condinuous then so is also
flu: 7} respeciipely.

Note thatdf#.4.11) is the ‘ordinary’ Lebesgue space {Ey; .7 ; v
then (4.4J8)Rolds for the group of translations xj =a; +a;, j=1,..., &,
and m;fh% case gpace homogeneity of a dpnﬁltj’ means t‘nal, there is
a 'ﬁ{flp’t-ion flr.s;2) such that fir,s; 2,9 =flr, 8 ¢, —2;). Also, if
shationarity is added then there exists a function f{t; 2,) such ihat

it 2, )= flis y;—ay), and in the continuous case this is then the
funection ocenrring in (4.4.7) under the integral, Similarly for locally
compact Ahelian groups in general.

Now, the group of translations is not the largest group for which
{4.4.18} holds, not even among continaous transformations, the largest
among the latter ones being the group of motions which inelndes
orthogonal transformations as well, Now, for the latter group the
tunctions f{r, s; 2;) and f{f; z,) depend on the distance |z| only, and
the Fourier transforms of sach continuous f{f; z,) are the functions
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e~ftad) in which +(a;) depends likewise on |« only. Now, such a
¥(z,) is real-valued since the imaginary part changes its algebraic
sign under Lhe orthogonal trausformation a;= —ay, and, by unigque-.

ness, the Gaussian and Polsson parts of (o) must be radial separately.
Here we have

wiog)=c| x| —}—f {1 —cos (a, x)) dF(z), {4.4.20)
E}

where F(774)=F(A) for any rotation around the origin. Now, if wel
‘radialize” the integral, and denote by G(R) = function for Whl‘c{l'
GR}—G{r} is the value of P(4) for < |z | <R, then we cauwnte
for it o R
(1—Hyg p(|2]. B)dGR)), A )

SN+ ,

v
where H (#} is the funection ¢,.J,(z) =, with ¢, beitg do chosen that
Hi0y=1. Thercfore O
I i Piv+ly \ﬂ'l
Hy(z)= E( W &
= I (ﬂ+v+’l)

and if we ot &+ 00, that is, v— 0, then, Hi(z) > e~ Therefore, if we
put {= 7% G{R) =7y(f), the foraat {20} fsin

A"
wialf=cja [2 ]. ':0 (1 — e a B dy(t) (4.4.21)

and aetuaslly the followi ng ’a’lem ‘et ¢ah be proven:

THEOERLM 4.4.4. ]f}b function v(y) is such that (|« |?) describes
@ subdivisible p?’()é‘ehé‘ Hfor | |P=2f+.. +ab, for all P>1 then v(y)
st be of the form. 4.3.2),

4.5, A ﬂkﬂ’i‘ém of Hardy, Littlewood and Paley
DB}‘IWTIO N4.5.1. Given (4.4.11) we call a function f(z, y) sgg-m-m-et?'-ic,
ify ﬁ(’z,f J=Flw, x), and we call {f{t; x, %)} symmetric if it is so for each t
Note that, in EL. or T4 if flo, i) =f{z—y) and f(2) € Ly, then f(x,y) is
symmetric if and only if ¢,(a} is real-valued.

THEOREM 4.5.1. If f(x,y) is symmetric and
fla,yy 20, ff(x,y) dy,=1= f flz, y)dve, (4.5.1)
and if we introduce the distributive transformation

=f fle.y)gly) dvy, (4.5.2)
e
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Menﬁ;r gl = 0 we have
Jk(.’c)” do, = ’.r_;r(g;‘r)*”rla\:_,f {£.5.3)

Jor every pz 1, and for p=1 equclity holids.
Proof. Obviously

[Fe-(x) v, :J-°(-' J‘j'(;r, %) d-z.!x) gy de, :J‘g (hde, N\

a8 claimed for p=1, and for PZL, it we apply Holder's if_]k?(.‘{ilr;]flif"'_“'to
Sl y)N fla, y 2 g(y) we obtain first e\

hayw s ( (f(vz, )y, Mﬁf 1edy, _J fle, a;}g(‘r;:u’:fh

and if we now integrate with respect to z we obtct‘iﬁfé 5.5
Note that only assumptions (4.5,1) have h%n Tised and not the
symruetry in its enbirety.
Derivrrion 4.5.2, We say that o Wlarkoﬁden‘q’tv Uits et is of
special kind if it is symmetrie andlfthelxha constant 4 > 0 such that
flr+s; x éA[ B zs;g -,—lfrgs, )] (4.5.4)

www rauh 1‘ary
identically in 7 >0, s> O,z ye R

THROREM 4.5.2, An i dra\zty sxbo;di-nate o one of special Find is
lilewnse 5o, with fhe S »4\

Proof. flute; @ e,r\}\\—'wf(! y) oyt ude)

.‘\)
N —‘ J s gy d,ylr wydyp(s; v
i"\’ '
a\\» : J ] fors ey d s w)d,y(s: o)
i~ Al [ vt 500
P +

—Af-u; z,4) +Aj(1,'; Y
Note that the property (4.5.4.) is wor Possessed by the Gaussian
density in B, 1
S w9 :,—Jg—{‘ﬁ'-"'r} fo—y® (4.5.5)
but it is possessed by the Poisson—Ca.uchy density
1 ¢

7 ey .

et}
=]
=
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for which it was inlroduced by B, H.A.C. Paley, in its periodic
version (2.5.0) on 7. Alzo, their characteristic functions are e and
e~ hal g thint the recond is suberdinate Lo the first.

TnporEM 4.5.3. For a density of special kind, if we take o Baire
Janckion t{y}, ye R, O <t < oo and set up for g= 0 the transformation

'R

fti.v:«—' F)s ) oly) do,= ff(f(rt:);y,x}gty}d-v.y, (4.5.7)

thin we heie 'k (wPde, 2447 [g(y}z the,, {(4.5.800
o N, ;"\\ "

« \&/
fisnaris, As known, under cerfain sceondary a-ssumpti9n§< ¥

sultably eloosing #(y) the function {4.5.7) will be a.e. equg-]fsi;
&/

i) = sup [ Jit e g de, N (45.9)

ftf0 R \ \

inwhich cas (4.5.5) iy AN
J fx)2de, < u‘zf (y)mm (4.5.10)

and 1hds i< the maner in w hmrlmyém gfot,kgg sort are nsually

stated,
Frogf. «mg Hilbert space theo‘ry, 1{' for given {{z) we denote the
Operator (4.5.7) by A= Lg and{ntioduce the adjoint operater

o5 BX= [0k 20 ateh s

L ) v

Li1xg) =Pra)s 3.0/ 062): 2.0 gte) o o

SN He) = 1) gl e
o) )
V7 safster:mag0 4w w0

=ALg+ AL*g,
and henee

(Lxg, Lrg) = (g, LL*g) < Alg, Lg) + Alg, L*g) =24(g, L*g),
and this 11’]11)]113“% : Lg ||ﬁ3 |IL=vcg |E§ 24 ||f? |2 I L%’} I3
and this i (4.5.8)
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4.6. Functions of the Laplace operator

With any given subdivisible process {#{t; z;)} In E,, we associate
the semigroup of operators

e = f g4 (6 )= Lig, (4.6.1)
E
and in characteristic functions we write for this alko
qsh; gba oy )e'—l‘yf.xJ) (-}6.2}

1t follows with the aid of theorem 2.2.4 that these Dpera-t{ar:é\a}e-
bounded distribntive transformations of the Bauach b}_)dclﬂ“'\_i’: and
L into themselves, and we will view them as transfor ma{tmm of the

intersection L, ,=1L; L, into isclf. e,

B\
TurorEy 4.8.1. A semigroup of distributive transfoimations
h,=L,g, A (4.6.3)
051 <00 of Ly indo itself is presentable in thedorm (4.6.1) if and only if
('} each L, is commutative with tmml{rﬁam und bounded in fy-norm,
ii) for g 20 we have b, = 0, and {iii) zt’cqmerges strongly in Lo-norm fo

1dentwy af the arigin, W\I;a.ma%hywﬁyﬂﬁg-m (4.6.4)

N

Proof. The *only if> part i qmte easy, and for the proof of the “if”
part the following propoa‘t\'bn will be taken as knawn,

LevMa 46.1. 4 bou\qﬁed linear operator h= Ly of L,(E}.) into ltself
is commutative with yranslations (if and) only if there is u bounded
mensurable ‘mhigplier’ x(o;) in E; such that

D7 pae=d ) te) ae (4.6.5)
Now: &ce Ly, is dense in L,, by assumption (i} of theorem 4.8.1

there! ex1sts a f&rmlv of bounded measurable functions {y(¢; )} such
th&t
\ 3 ¢?A; 1)__'969 ‘35 ; ; a N {4.6‘6)

Al o xlss ay=x(r+8; 2), (4.6.7)
a.¢. Next, since L, , containg e~te~me""al* it follows by assumption
(i) that, for fixed ¢, y(#; o) e~7¢'=" i3 a positive-definite function a.e.
for cack ¢, and by theovem 3.2.1 the function ¥ft; a2} is therefore

positive-definite afier alteration on a set of measure 0. Finaily,
assumplion (ifi) implies

]imJ. e e | 1wt o) [2de,—0,
Ex

thn
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and all thix implies that {y(¢; o)} is a subdivisible process {e—twtany
a5 claimed.

Next, the following facts from operator theory will be taken as
known:

Lavista £.68.20 If y(ay) is a (finite) measurable function in B, (not
bounded) thern there &s a distributive operglor h= Ag which is expressed by

Pal) =) x(a)- (4.6.8) O\
It s defined for those elements ge Ly for which . o, \
f P, [P (L4 xle) [Py o, b
R ‘\

and these elcments are dense tn Ly; also the operator sz&f&djomt 1f
Xla) is veal-valued, and a (more general) ‘normal’ ppkgator, if y(x
comple-valued, \

These oprafors are commulative, and if wég'énote the operators

pertaining v y{a)=o,, 3=1, ...k by
D= 1 o\ (4.6.10)
o, d%’i‘%t?ﬁbrary org.in
then the previous operator can be d.ano?ed by
ALHD,, .. Dy,
\”\X( 1

wceording to ¢ Enown def@z@n of @ ‘ function’ of several normal operators
which conmmate.
The ap p!ica-t-ion,\ ot this is as follows:
N, 4

TuEorREM 4,6\?~.3Tke Function (4.6.1.) satisfies the ‘diffusion eguation’
N4
.\‘~" dhy Dk (4.6.11)
E - V(Dp W R e
the dE’N F'ﬂf”‘c P_ra,ghnq wn norm an 0 4t< oo, whenever the initial element

g\—\ho is one for whick y(Dy, ..., D) g 13 defined.
In peerticular, if we mtmduce the (negntive) Laplacean

o

y 1 i ¢ D)
5'___{Df+'“+Di):‘@(“_2+"'+8_a:2,)’ {4.6.12)

&xd
then, for o process subordinate to if, i,-’f(ot}=v(| a|?). we have

D yayhy, (4.6.13)

wheneper v(A) g exists, at any rale.
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Proof. The Plancherel transform of 1/5(k, .—4,), 0Zi<o,
0=t Ecois

el ]

& () e=tla). -

and for fixed £2 0, this converges in Ly-norm to ¢, (o) el { — (),
whenever ¢, (x) ¢r{ce) € Ly, at any rate,
Turning new to spaces other than &, we first note as follows:

TrEoREM 4.6.3. The preceding definitions and statements cun, bé
adapted to (periodic) functions and subdivisible processes on T L \

Now, if a procesz on 7%, consists of densities, . x)
Fit 2 ) =t a—y)~ 3 el p2mitm =i o8 3
it M'\§~
then on putting f,.(z) =249 we may write fod NG
N/ _
flE 2 Z emwlnf (x f‘o{(m‘, (£.6.14)
) ™

and this we now axiomatize as follows, 011 a measure space (4.4,.11})

with ¢(R)=1 there iz given a count:ﬁ)le (Jomplctc {complex-valued)
orthonormal system www.dbra uhbrax y.org.in

' fm( fm I‘} d?”x - amm fm (4'(;‘ 15}

which is indexed by somé 1\)&1& {m}, and there is given a stafionary

Markotf density as prsﬂ\blﬂ] y defined which has an expansion (4.0.14)
ith ex t v

wi ponents f()i_ v\hlch Re tr{m) 20, (4.6.16)

and this oxpa:[mtm is convergent in the following manner. If we tuke

any elemcht) glr)e Ly(R) and assume that say g(z) 20, and il we
mtlodue'\b & eXpansion

N gLy~ 22 Vmdwl®)s (4.6.17)
N tm)

/7N X w .
\t\h?m tor evory {30 the (non-negative) integral
h.:(x)-——j‘f(t; ¥ gly)dv, = L,g (4.6.18)

is rigorously what a formal substitution of (4.6.14) indicates, namely,
again an etement in L,(22) and, in fact, the element whose expansion is

hoa)~ 2 ety £, (x). (4.6.19)
[C:A]

Now, with any set of complex numbers {x(m)} we can associate

Q)
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anormal opcrator A= Ag on the Hilbert space L,{R) which is defined
for those elements (4.6.17) for which
2 [ 7y [P (E+| x0m) %) < a0,

{im}

the value of ii. lﬁleiﬂg -"\9'“»' X] X(?ﬂ') ?(?!B)fm(x),

{m}

and we nay now state as follows:

THEOREM A.6.4, If we are given (4.6.14) and A pertains o the given,

maultipliers {i7(im )}, and if g is an element for which Ag is defined, theny
NS ©

(4.6.18) satfisfies ah O
d;: — A, (4,6.20)
stromgly wn O 21 = oo, '\\
Alsn, if frr.‘ iy ) s subordinated lo fiE; x,y) by (4.3.2),’{{1&1&, subject fo
secondrry aesitinplions we have WO
..... NV
Fits 2, 9)~ X oW, () (4621)
{m \/
and for the corresponding normal operator awehave
w_@m&.d@;’{ﬁiﬂi%rax‘y.org.in (4.6.22)
Retaraing to 7, for a momentME J(m) is real-valued,
LGmy =0, (4.6.23)
L)

or, equivalently, if t.hi\%iéﬁéit-y 'is symmetric, and if we replaco

et by jty rcal gnd imaginary parts, then we can also write

alternatoly he Tf‘f sy~ T et f () £ (@), {4.6.24)
. iIN” (711}

where the x\ni)olq i}, { fmf2)} are not quite the same as before and

the I&t-tel‘}?bga-in constitute a complete orthonormal system

NS
m\J

\ )
but now a real-valaed one.

In the corresponding analogue to theorem 4.6.4 the density f(f; ) y)
is of course synupetrie now, and the corresponding operator A which
NOW carvies again f,, into 1r(m) f, 15 at present self adjoint and not
only normal, and this is an important difference indecd. The archtype
of such an operator on T, (or E;) was the ordinary Laplacean A, and
Wwith it we formed the functions v{A), and these GUIISt-I'llctiOl’.l? can be
undertaken effectively on manifolds in general. In fact, iR s

Sl Fonclit) v = Bramefml)s (4.6.25)
E

N\
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manifold, compact or not, and {g,;} a positive.definite syrametris
tensor on it, both of sufficiently high differentiability class (7, and it
we introduce the operator

18, B
A=—-~ ::(’- (( vggY QL) , (+.6.26)
g dat

and the volume element du, = Jjyda? ... dx, then a suitable “closare’
of A is self-adjoint, and for all compaet R and many noncompadct ones
there exists s Markoff density for which {£.6.20) is the eganiion N
dh ReN
e -, AS02T)
now. Also, if R is compact and v{R)=1 then we again hci,vfé’ffu expan-
sion {4.6.24) with {f (a3} and {3¥{m)} being eigenf um’t{cmﬁ and eigen-
values of the operator, the latter ocourring multiply: and for many
noneompact B analogous expansions exist with t\zc index # not being

discrete any longer. Also, in all these cases, t@ ]?}mctﬂon S eyl ) itself
satisfies the cquation

AT —%ft 3, (4.6.28)

which is formally eqifiValen }ir%%nlaf %I E"orfor ‘all” initial funciions
hy=g, and our subordinate dens’]txe» fit; w, 7) ratisfy the corresponding
egquation

UV g e 4.6.
RN V)it 2.9, (+6.29)
in which the right&ifle must be interpreted ‘operationally” however,
since v(A) s ngtd Titcral differential expreszion any more. It we view
{£.6.28) as deﬁmnﬁ a Gaussian process then
s\ ?__f-a-—ﬁﬂf, 0<p<l (4.6.30)

*

deﬁnes the corresponding stable processes say, But all those generaliza-
\tmm are symmetric processes only, and the problem of exhibiting

nonsymmetric Markoff densities on manifolds in general remains yet
to be broached., '

4.7. Multidimensional time variable
The semigroup requirement
Flr;y® F(s; ) =Flr+s:4) (4.7.1)
for a subdivisible process {F(t; AV {4.7.2)
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on Ey, say, and also for a stationary Markoff density on any (4.4.11},
i we ignore continuity, can be set up for elements 7, s of any ‘semi-
group of addition’ 7y in which a commutative associative operation
r+s=11s defined. A situation of some interest arises if T, is  cone
ina Baclidean B,.: (f,) according to definition 8.2.1; and if in this case
the characteristic function yit; «;) of (4.7.2) is continuous in (¢, &) then
it must be of the form

at N\
expl =il +.. +iaibale))], (+.7.3)
as ean be shwwn. Alwo, the ‘infinitesimal” deseription of the proeosms\
now given by the system of differential equations . QO
}) & s. ;"

O Dy oo Dby v=Lyns O AT

a, R
in which the operators i,{D,, ..., D) are normal opoi"afors which are
such that for every (4, ...,1,) in 1” the opemtor‘ﬁi;?fl-i— .~+t,1, has
no spectrum in the left hd.]i plane, v

Agsuming that T is a proper cone we take’ in £,: (£,) the cone X
whose duai T is the closure of T; dnd invanother space I;: {y,) weo
take a proper cone ¥ whose duaddn Eﬁﬁ;t&wh) il beglonoted bV W and,
asin section 2.2, we introduce a qu;ipletely monctone transformation

va(g‘{;’”;gn}, .)L=}, _._:Z, (475)
from X {o ¥ This gi\(es,\i-ijs;to Laplace expansions

o~ N — [ g—(6E) dt‘}’(t; w),
"'. N/ Jr
N
in which {y{By qg}} are Lebesgue measures on the Borel field {8} of 7,
and they ¢ ga}n have the properties (4.4.2), (4.4.3), (4-4.4) of a sub-
ordinatof g belore.
Olgl;rpualy, the function

/7N : }

@ exp| — }E’w,\hﬂh(“)s ""‘f{fﬂ(a))]
Ac1

describes a process subordinate to (4.7.3), and if (4.7.2) has a density
fit; x) and v{B; ) is a proper subordinator in the sense that it is zero
outside T}, then the distribution function F(f; 2) of (4.7.6) has again

a density f{1¥; x) and the relation

Jusor={ fsmydirts

(4.7.6)

holds,
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This again applies to funetions on the multitorus and o Markofl
densities with expansions

?BXP[ 51§f1 ﬂ‘l)_!_ _1 m} |Jr?: fm

i)
o1 general spaces as before,

Returning to (4.7.2), if this is Ganssian symmetric fov cvery £in T,
then ¥, {a;) 15 a synumetric guadratic form @,{x;), not necessuetiy
positive semidefinite by itself, and we think that the foltowing oughte\
to be  pertinent definition:

s

DErmermiox 4.7.1. A subhdivizible process {F(w; A4)) on e Qt npu
closed cone W in some K,: (w0;) 18 subardinate fo the Gaussiuwmg Morally,
if for some dirnension n,thow iz given a completely mom)mnen apping

{4.7.5) as described, and a set of quad[dtw Torms Q,‘(\,{, o la)
such that the characteristic fanction of Fiw; 4)skel the im ui

exp [“ i wavalh(eg), ., %ﬁ%ﬁ] .

It would be of interest o study t}u% Cl’l%b o processes for any given
kand W, say.
WWW. dbraulfbral y.org.in

4.8. Riemann’s functmnal equation for zeta functions

Turowey 4.8.1. In the@?mze aof the complex variuble s=cg it et

X(s) Ve defined and hologhgdphic in a domain confaining the exterior of
i cirele \

DETS (8.0
and ifs Laurenp Ej&eéoarnposition there be
:'\n'
'S x(8Y= x5} + x*(s), (4.8.2)
< \“" o c o
N Xsh= 3 -t yMs) = X v,.en, (4.8.3)
:..\: \ - By
~\) C

\/ Hm e, [P <p,. (4.8.4)

If x{s) possesses in a right half-plane an absolutely convergent
CEPANSION.

e

X(8)=’_ Sl e dy, oZal>p,) (4.8.5)

with a continvous ¢,(y), and o similar CXPANSTON

fon

ats)=| e dy, aZof<—py), (48.6)

o
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ot Teft k- pleene, and f we have

im y{o+é)=0 (4.8.7)

| & |—=-0

unifornely tii ecery finite interval o' S0 20", say, then the difference

$.{y) — uly) =ply) (4.8.8)
i3 un entive funetion of exponential type, namely, 2\
e Cn¥" A »
=% 7 K®
plark %‘ wl ‘\ Y
- ($)e¥ids= ! N s) e¥* ds "&EJS.Q)
T P AWM= P OV
2 ~\."
where €' is the cirrle | § | = py 513 :\

FProaf. By Tourier inversion of (4.8.5) we obtam subject to a
criterion, A \\'

1
dlpen=g| ¥, s

‘,o

%00‘

that is, Qo4 = J dbga slet ary drg in (4£.8.10}
1 ?J‘Y v,'ﬁO

and gimilarly Sy = BU yleyerids, {£.8.11)
BT g—iw

and if these 1111001(:15\1»(3 he tually convergent, then, on account of
(4.8.7}, by the use oi Yauchy’s theorem we obtain for @{y}—¢:(y)

the value .\ 1
O\ — B yis)erds.
(N 2mi J ¢

\s
; L3
Howevep, (s} is an cutire function and therefore we may herein

rephicg) WS by v%s), and if we substitute (4.8.3) we obtain the series
(4.3:47% In general, the two integrals (£.8.10) and (4.8.11) can be
\\,hmtmi as imits, for e—0, of
L r et sy e ds,
2 ) o
(theoren; 9.1 8}, and if we apply Canchy’s theorem first and put e=0
Aterwards, the result follows again.
Lumya 4.8.1. For any entire funclion {4.8.9), subject to (4.8.4), we
haye

= 2 GI"B —
L ply) e dy=3 s (23



110 LATLACE AND MELLIN THRHANSFORMS

g
for a > py and —*J. ply)e ¥ dy=x%s)
— &
for o< —p,.
This follows readily by direct substitution of the series (4.8.9) and
term-by-term integration.

THEOREM 4.8.2. If we are given bwo absolulely convergent infegrals

o0

xv{s}=j_ P,(y) e dy, Xz(s)‘—”.’ Puky) e dy,

the first for o> o, and the second for o < o, and if the dz‘;}j“e-mnca‘tl’?ﬁﬁ}
i8 & function of exponential type, then there exists a holomorphic furction
X(s) vn a domain (4.8.1) with the property (4.8.7), such that{ ™

Xels)=x(s) {for o>0o, and xil8) = x(s) “qu' <0

Proof. It is easily seen that the two integrals in ’thé'sum

0 ro N
P4 = J ¢.rw>e-y-*dy+J Aieray

are convergent everywhere, thus deﬁmng»an entire fanetion, By the

pre(,e(hug lemma, and L on Lh%ngumwg&(g ifr ply), we obtain, for
> (0, 0)s

g‘) J. @r 6 ysd?j‘l‘ [ (¢1(y +P }}em‘ysd‘j
Q-\k%"e),
and for o< (o, "'Pu? we obtain again
peit -*f $ily ~wdy+f (o) —p(a) €~ dy

§‘ X¥E) + 200,

Alsoq (4 8.7) is easily verified for y*(s), %(s) separately, q.e.d.
For application we introduce the variable x=e-?, 0 <z <o and

Wi
\Pite #N=Da), =B, ply)=Pl),
5o that we have ®,(z) — @ ()= P(x), (4.8.12)
where FPlx)= Z:T § X d'g -
2 el

and for either 6> o, or o < a; wo have the Mellin inversion formnlas

so-called o -t o0
:f Dix) 2L, Oz z.,]'__j ' Xﬁsl‘fﬁ’f,
0

e 5
It ypion @
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If we have <, (x)= Ll Tpe~ %, 0<A <A <., (4.8.13)
and, for aome §2- {4,
1 =
Do) =3 %} bemlt, O<p <py<..., (4¢.5.14)
b
and P(fﬁ) - _a'i]+'x_§5
& b N\
which corresponds to Y=~ T O A
| x0s) JR Y Ko\
and if wo put A, =y, =0, then due to )
]" ; o l‘*‘}
—;:)z [ e Mgy g0, AN 3
Iz ,\\
_{_1 \.’:‘}
— —e meps—ldm, 3> RN
el \)
the following conelus s O
e following conclusion ensues: v

TaEoREM 4.8.8. Qiven a ‘modular ?&Iation"vx

24 2 Rt = Mlﬂﬁ’i‘g‘ﬂlbrﬁ? grg in (4.8.15)

if the series )= a,s , ?;r(s) =3 b {4.8.16)
b AT 1 f“'n
are absolulely convergent So:kr’ﬁ}lﬁ!‘e then they are meromorphic functions
and we have 11( ) g(s \J F{J-—SJ ;?(3,_ ) (Ex(ﬁq)}, (4817)
X 8}% _t By + (entire function). {4.8.18)
s &—4

N/

’\
Converselyy 131 8.16)-(4.8.18) émplies (4.8.13).
I\l&‘mdn{l\s 0w .:lppllf‘&.ntlﬂll was to derive from

WA
s Y
NS

§"\; 2" e—n6ﬂ¢2 E e~ —tmitin®
SN
thaéquation T(s) &(s)= F(% -8)é(z—9)
for the function E(ay= z . More generally, theorem 2.6.4 implies
T mrs

88 follows. 1f iu the notation of that theorem we put
m+ ) e A A
E(s) =3 AT
(Q(m + 'r,))

{om)
(m-i-J) -—217'1..-[,[??‘” U] &)

7ls)=3"" m{Q (m-i—y)) o

$70]
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then wo have i
D(s) §(s) = (et )
and there are two simple poles at most, and

()= — DB ey Rify) 1

Dlr o 3k —s) (e -+ 3o — 8),

& (det @) r+1lb—y’
where efz)=1 if =0 (mod (m,, ..., m,)} and 6(w) =0 othorwises dnN
particalar, for the function ) :\:\~
1 _,P (ml, ,fm;) N\
g(s) == H \J/
b6l (m1+ J ) :} -
we have P} () =¢T (r+1k—s) g(r—f-g."u—s} \

where P,(z} is any harmonic pelynomial of order % =-\! i,.

A\ .
4.9. Summation formulas and Besse(ﬂhctmns in one and
several variables O

TuECREM 4.9.1, Formally, if o Paih of-functions

{fapgy (4.9.1)
tare connected by the fd-r‘m&'l&lb"w}:-}bg ar g}m'g in
o =p !wq;{'} T 5-1(2 i) 6D 00 (49.2)
i which cuse the pmfr\\ I (Ax), 1 ; 2% (4.9.3)
R P I
is obviously hke@fsﬁ 80 connecled for any x>0, then any modular
relation w
g\‘ > Z ape—tno | 5 % b, e—Ane (4.9.4)
i plw&bke summation formuly
~O S0/ = 20,00, (9.
\ )
and therefore also E Cpf(A,2)=" L b, ( y) {4.9.8)
LProof. We will take as known, the formuyla,

et 2 Te e ia,  gon

which simply means that the pair of functions

{e, e} (4.9.8)
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is linked by refation (4.9.2), Now, the original modular relation
{404} 15 a speciol case of the formula (4.9.6) for this pair of fanetions,
and thus our theorem holds in this special case af any rate. However,
starting from (4.9.7), If we multiply (4.9.4) by dp(x) and integrate over
(0,00) then we obtain (4.9.5) for the functions

. =) "0:1
Ji=1 e =dp(e), glp)= J — e dplz),

Ju o @

and if we subziitute (4.9.7) we obtain {4.9.2) in this more gencral cd,se,\
a8 claimed, P

In thiz way we have obtained actual eriteria, which we s will not
reproduce here, for the validity of {£.9.5) for completely‘ménotone
functions f(A), in particulac for a,=0, b,210, bug\thc following
alternate procedure was likewise featured. Tf wo €xtend the Laplace
transform (£.9.7) into the complex hali-plangsw +ia, 0<x <o,
~w<a <oz, then by Fourier inversion it k\ca}aes equivalent with

1 T (N A1 for >0
2mi s | W0 for A<D,

fl— o

1 [edim gopiedz

W\q\}!:.hilﬂraulibl‘ary.org.m {4.9.9)
which is an important formula e to Sonine. And in keeping with
this approa. (h, if we start f;\ﬁin

¢ 1
q e },@:—p:z}_,_,_ b e pailetiz
*{ (x+ o) 2

for some = ( ;Q Bt small), multiply hoth sides by dofa) and inte-
grate over ( '\)c rc), then this verifies our theorem for appropriate
clasges of f;mp{.mm representable by integrals of the form

g ':.j\ Jy=
AN Jow
‘md” with some caution we can even lot ¢—0 as well. However,
witl notreproduce details here, but we will turn to functions in several
variables instoad) for some frst statements ab any rate.

In the Fuclidean E, of the points &= (2, .- #2) ¥© take a proper
cone which we now df*note by P, Tts ( clospd) dual will bo denoted by &,
18 points by A=(AL, ..., 2% and p=(pl .. b %), and we Wﬂlk also
introduee sequences of po1nL~, A=A /\R) and ft, ={pd, o fi)-

As o generalization of the ha]f pla.ne ¢=x+ i, we introduce in the
Space Iy, of the k& complex variablos

* oo

g-tetiond dofa), J~ [derf{o) | <o,

we

z,,. - ;'L'j -+ 1-95,—
H BHA

N\
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the point set
(T i) €P, —wo<a;<o, f=1,..4&

and denote it by 7% ((Tube’ with basis P). Next, as a zencralization
of the transformation ¥ =2~ which dominates the struciure of (4.9.4),
we ugsume that there is given on P an analyilc involution

that is, a transformation ;= U {x) for which \

_ AN
U U =identity, ABPI)
and we assume that an analytic continuation of (£.9.10¥ ‘t;};;-nst'orms
Ty into itself holomorphicaily. Finally, as a gelwra-liilfit;ioil of the
denominator #% in (4.9.4) we assume given in ’E;‘:}. holmporphic
funetion E(z) for which R{UV(2))={R(z)) 1, R(z{-]—: D 7, and Rx)
is real for x in P, 9 \d

As a generalization of {4.9.4) we introdyé& % rolation (if existing)

of the form o 1w >\
Y e i —_— (K0 a~lan T, (4.9.12)
o B2,

. ) www dbraulibrery.crg.in .
with A, s, in &, and again {A, % Az, + ... + APz, and our aim is to
find a suitable transforypation

A ‘
¢ {f\@’:.[ Sige; AVF(A) dwy, (£.9.43)
B\ @
in which S{p; A) i€theant to generalize the function
O~ o
"\:“‘s 'I,L_z(ﬁ—l) ,}3_1(2 4\|' (#R)) Aum—'l),

sueh t-h&t“gt'f?).ﬂ) formally implies the summation formula
N\

3 \Y Za, flA,)=Zb,g(x,) (4.9.14}
'"ﬁfu:fany pair of functions so connected.,
For ppin @ and 2 in B, we set up the multiple complox integrai
1 a —im (Mg ot g, TR 1A, 7)
ht N ) — {:_____ = i
{ﬂ’ ) (2?Tt)ijl_zm . .J i R(z} d"'l vl L3
{4.9.15)

for a point {2y, ...,%,) in P, If for some fized 721 we introduce the
guantity

M, {x}:([m r o fedey W
TN e T na [ Rl iy, w2
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then the integral (4.9,15) obviously exists if i 1 {#) <0, and if, more
precisely, we have sup | M {x) | <20 (4.9.16)
et

forevery compact subset 4 of Pthen the integralis indeed independent
of the point r rhwsen, as can be proven by shifting the coordinates 2
individnally, und altogether several timos. Furthermore, if also
Mofw) < oo, then by Plancherel equation we have

"

N & 2y, Reliz)
P8 A) [T e :(27:}—3"] = vy, O\
e e (O

o By

and if we assumic that for every 2 in £ we have

2N
L ‘:

sup My{ta0) < oo, \ (4.9.18)

N
15w "N

then, because of (1, Re U(z))20, (£9.17) impliedthat we have
Sl y=0 for A not in 4. x’.\\“‘

Tasorey 492, Under the assumpliong(69.16) and (4.9.18) we
have for i in (1, O~
1 e g el
G B B

NYS(; ) for A6,
4 ={ 0 for Anotin@,

BECY, O, 1D

(4.9.19)

74

o\
the integral being indep n’éc’a‘fﬁ of xin P.

For R{zi=ut 1he ,tﬁo assumptions arve fuifilled only for 8>1
and ¢4 resl':ectiy-@iyf whereas the conclusion happens also to hold
for >0, Now, hdould be shown that our theorom also holds if the
a-ssumptiomj»i];c fulfilled for o ) for some p>1 instead .Of only
P=1,2, anlstich  gencralization would include &> 0 in particular.

N ext by purtial differentintion under the integral sign in (4.9.19)
the Jallo &;r'ing conelusion can be obtained:

\T‘HLOR eM4.9.3. If plzy, ..., 2}, G20 ... 2) are polynomials for which
g{Uz).plrR)=1, (4.9.20)
i if *(2) is the polymomial adjoint to g(z), then for any R{z) we have
the tn-fold partial differentind equation
q* (—°) P (i) Ste; A) =8z A), (4.9.21)
) 7 \GAy,

Subject g consergence assumptions which bear on B{z), this equation

being usuy Wy of an elliptic-hyperbolic type peculiarly ‘mized’. 8
-2

Q)
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For the ordinary Bessel Sunction we obtain in pakiculog
a2 " et e a0 e
a_#a(‘,pmfy(z VA Ay = — iy JA2 (M) A, (4.9.22)

which is equivalent to the classical equation, of course.

Frequently we will have ¢(z)=p(z), R(z) = p(z)%, and then in addition
to the ‘principal’ cone P there may be other cones to which our
analysis applics, thus giving rise to ‘Bessel’ functions uf “zecongd™
kind, and possibly also of ‘third’ kind, ete.

By Fourier inversion of {4.9.19) we obtain as follows: ) \ \) '
TuEOREM 4.9.4. For z in T, we have A
e~lwTiah A\ 3 .
T .__J GS(#_; Aye Ay, \ O {4.9.23)
{the integrol converging absolutely), and after mpt’acin:q:z by Tiz) we also
have the inverse relation N
ela ":f Spe A) E(ii-n;?u {1.9.24)
=3 ) A ()
Now for afinite sum (1) = ¥\ ¢ kb9 (4.9.25)

www.d br‘aulfb}géf‘y org.in
the transform (4.9.13) has the wlle

gt T

AT eTm

and therefore theore’}n\é.’gfl leads to the following conclusion:

THEoREM 4.9.5:...1*70-3'??1&333!, {(4.9.14) holds and the transformation
(4.9.13) is selfigversive, meaning that it implies
(N .
" Foy=| 8a; gy, (4.9.26)

Anydhvious (but Important) multidimensional caso arises if P is
LHiGoctant 2> 0,... 4, > 0 and B{z)1s a product #f1 .., 28 for positive
\e‘xponent-s 81+ 83, @qual or not,
Another situation arises (and apart from variants and combinations
it is the only nonobvious one knowny} if for & dimension & =m{m+1)/2
we consider the symmetric roa] matrices

X={r

and a5 independent variables take the quantities 2,,,1<p<m,
A2 g, I $p<g=m. Tho domain P shall consist of matrices which are
strictly positive-definite, and the dual space consists then of matrices

m}ﬂ, g1, e
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-_— .

which are positive-semidefinite, the nner product (A, z} being then

the matrix trace,
trace (Az) = E Aj}a@

D=1
The invoiution £7(z) is the matrix reciprocation z-1, and Riz) is
(det {z})¥, for & =nfliciently high., Tho function 8{p; A) 18 then the
multiple integral . {\

i " fe—trape (pz— 1) 1dTace (Az p p
" T Ty T — ... 2 2y 4 ¢
i) | g s N\,
S
and for this function we showed, in & somowhat more genera,lseiting,
that the product »\\ h

Ly; Ay=(det | pd—* |jp- éfmwsm A, \\"

which is the actuul generalization of J _ () rs}g\mmetnc ing, A,
¢ '\
Iy =T, m &0

and this iz a. rather nontrivial fact, apparﬁhﬂy

\

LA db&'auhbl rary.org.in

,M
-
/ b
N\
g\f\,»
pN
o\
\¢
A
\”’
Nl
AN
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CHAPTER 5

STOCHASTIC PROCESSES AND
CHARACTERISTIC FUNCTIONALS

5.1. Directed sets of probability spaces A\
We are recalling the definitions in section 3.7 to which weo, will
refer soon, \ )
DuriNirion 5.1.1, A set of elements A- (A) is called dixected if for
somo pairs of elements thero is givon an order relation ‘& ™yuch that
(DA<A, 2)A<pand <y implies A<, (3) A<z a(d.}‘.a <A Implics
A=y and, what is important, {4) giveu A, z there 4¥ah clement v such
that A<v, p<p simultaneously., D
DE¥INTITON 5.1.2, If we are given a famﬂf{%ﬁf sets
{Q: (I (5.1.1)
which is indexed by a dirceted set, and if for overy A, 4 with A<z
there is given a transformatien] 1};31—;&1*5/ org.in
(,Ja;;;,},;ﬂ(w#) (5.1.2)
from Q to 3, also called grojection, such that
) \‘:" Fi=identity {3.1.3)
and . ‘f)lv =fll,u.{f,:w) for A LY (5'] '4}
then the so-calle@projective limit of the family—which we will denote
by Q... (mm)x@{also by : (w}—is defined as follows. A point m,, js any
assem b]a-gc*g’rf points W ={01) (3.1.5)

from the sets (5.1.1) such that for each A in A there oceurs one point
) ){u}m {2, also called the Ath component of w,, and that for any
%\;Q;i these components are tonnected by (5.1.2). We are also intro-

ucing the mapping

Wr=Fin(0) (5.1.6)
to the Ath component for which we chviously have
Jae =.ﬁ’l,uf,uuc-’ A<y, (5.1.7)

and woe call it the projection from Q to () e

Also, we call onr family (5.1.1) smply mazimal if all projections
Faps far aTe into al of (3 2 80 that in particular overy point my in £y, for
every A, is the Ath component of at least ono point in Q.
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We will call it sequentially maxsimal if for every ineressing sequence
of indices A <A <A <o (5.18)
(which may be linitc) and any choice of points o/} in (;_ with
mgjt,- ‘__f?\,.hs(wgs}:\ T4, (5.1.9)
there is point o in (2, for which 0} =fj,.(e®), r=1,2,....
Deriviriox i.1.3. A stochastic family is a family of probability spaces Q
(O F Py (5.1.10)
7'\ "
which is indexerd by a direeted set together with simply mgzimal
transformatiouns {3.1.2) from €, to €, suach that each [fy % also
a consistent mapping of the entire probability spaco L &/
{Q; S P N GARTY
inte the entire {5.1.10), AN
We call the stochastic family topological if edeh prohability space
(5.1.16) is topoivgical and the wappings [a.l2) are continuous.
Now, due to the (sinple) maximality stiptlated, each fy., gonerates
a probability space {waﬂé%?ulibrary‘org.in (5.1.12)
* soch thas P =frF ~j3§{gi) =P {1l (6.1.13)

and wo denote by FF= Uﬁﬁg}’x the union of all sets in all o-algebrag
%3, thiz being a £ nitc:ly}\'\fdﬂit-i\fe algebra of sets in Qo obnm%sly. If
aset S* ocerrs in bok 7 and 5,0:___ and if A < g then our consigtency

assumptions impj}{" § PRSH) = P}';( S*); (5.1.14)
and for arbﬁx;;\x indices A, s we can find a third ¥, 80 that A<v and
<y an@"\g‘ﬁ“ (5.1.14) holds in all cases. If therafore we denote the
comumph Yalue of the two sides in (5.1.14) by PH(S*), then we e ted
b0 fitlrduce 4 *fnitoly additive’ probability spaco
} i ' %115
\ {g}: qu*; P*}, (3.1.10)

in which, however, &% and P* are only finitely additive hoth.

Dierserros 5.1.4, We say that a sbochastic family haé tho Kolm;
9070ff property if there is a o-extension P of the measure P*from &
B its oclogure &; and we then also call the probability space

(@ SiP, (5.1.16)

the projective fimit of the family (5.1.10) and th
stockastic process.

o entire set-up &
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TaEoreM 5.1.1. If g stochastic Jamily is topological and sequentiolly
maximal then # has the Kolmogoroff property, and thus gives rise to
& stochastic process,

Proof. By a gencral measure-theoretic eriterion of Kolmogoroff it
suffices to show that in the given circumstances there exists no
infinite sequence of element 8% In %* for which we have

ST28FD8ED .0 (B3.115
and PYhzae>0, r=1,2,.., (3.1.18)
simultancously, Suppose that such a scquence doos exist,, .\’i-’é"can

then find a sequence of indices (5.1.8) such that Sfe” A if we
form 8, =f, ,.(5%) then there is & com pact set 0, in O A SCh that

5 o . OC..:‘
CrC8, Py(0)2 P, (8- 2n0y

T

for all . We put £ =frL (C,}, and then PN

o r—1 { &/
Cr=0}=Cr— 550,
#=1 PSENY
so that obviously ¢ C g%, CROEED . =0, (3.1.19)

www.dbraul‘bf;‘a'l'y_or in
PRI = Py L -
£ (cf}zP ((Jr)'r“?(4+---+4ﬁ/ z%&}[),

and if we form back the sébs Co=f1,{CH in O a, then they have the
following properties, Each is compact; we have P, (C,)=P*CF1 >0,
8o that €, ig nonemptyy and we have Fa,a,{C) €O, for »<s. On the
basis of this we carpick a point in each €, which we denote by o, and
to this we add:'o}i}e farther points Wy =F,1 (0%, ¥ <5, and wo can assert
that the Requelte wy, Wi, .. hag a limiting point in ¢/,. Next, if we
replace {{T}\by a subsequence of itself we may even assume that the
limits £\ .
Q lim w)=w} eC,

4 '\’. : il nl

\"hé‘%ist, and from the continuity of Frg it follows that (5.1.9) Lkewisc

olds_. The sequentia] maximality now implies that there iz & point

@ in £ with these limits as components, and this means that the sets

C* have a point in common, which contradicls (5.1,19), Hence the
theorem,

We do not know whether the sequential maximality is really
needed, and also whether the limit space (5.1.16)is likewise topological,
and if the given gpaces (5.1.101 are strictly topological to what oxtent
the space {3,1.16) ig likewise so, o
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A measurable function Fh{w;} on (5.1,10) gives rise to a function
Fi(w)=F{fraon)
on (5.1.16}, aunin measurable, and ag previously stated we also have

Py APy = J TaoydP (=E{Fg). (5.120)

bR
RSN

Aninteresting =it uation arises if we are given a monotonely increasing
family of measurable funetions {F,(w)} for which we have

G2 F{en = FF_(w), AZp. (5.1.21)
2N

Tf the index set \ is not countable then the classical theorem thatsthe®
limit of the inteural is the integral of the limit carmot be @{a&?ﬁrted
literally, but, for instanee, the following version of it rema,l':ns: :

L&

THEOREM 5.1.2. Given measurable functions with p}”o@ﬂy (5.1.21},
if we admit il valives +oc then there exisis a m.easu-{able funetion Flw)
as follows, For euch increasing sequence of i?bd?fﬁ@&t{lr} we have

lim Fy () < Flo), S8 (5.1.22)

and there is sonie such sequence for whieh e".-ua-lity holds; so that if any
other F¥(w) sutisfics ull a‘eiatio'n‘,‘?ﬁ}i‘ﬁm‘,a A FHo), a.e.
Proof, Assume first that we adjsgi.h’a-vc

G5 (W)=l (5.1.23)
for all A, w, ehuose an jnekehsio g sequence {A,} for which
AsUD, E{F, }=sup; E{F}, {6.1.24)
and put ‘\ ; Flo)=sup, F (0).
1f for any 0tb£‘f&iﬂcreassir1g sequence {i,} we pub
A D" (3{e0) sy o (), (5.1.25)

then W(-;Z:‘-‘-&n find « third increasing soquence {v such tbat for every
Ef}if’il % there exists a ¢ for which A<, fi; S, For the function
\{I(\WT:S\HJ( F.(w) we thus have Flw) S H(w), Glw) SHO), ‘&nd s
Partienlar F{F)< }{/{}. A comparison with (5.1.24) now o hore
B{F}=E{H}, and hence H{w)=F(w) a.c. Therefore, we v ot
Gw)SF(w), ae. for every function (5.1.25), and this proves our
theorem for (5.1.23).

If this additional a ssumption is not given,

the new functions Fi{w)=1—e PN

for sonse fixed 4> 0 for which assumptions (5.1.21) and
both, and the theoremn follows,

then we can introduce

(5.1.26)
5.1.23) hold

Q
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We have introduced the transformation (3.1.26) rather than another
ono becguse of the following theorem which will be saitable for
applications:

Terorum 5,1.3. If all functions are as in Theorem 5.1.2 and if we
infrodace the functions

hafu)= [ e~ TN I Plagy,  dlu) ::J e-uFlel f Pley),  (5,1.26)
o 0 & e
then obviously () =inf, &, (u), (5.1.27 <
and also @0+ ) =P{Fly) <}, {5.128)°
that is, @ +0)=P(8Y, where 5% is the sef where Flo) <o, T Yev%}F {w)
¢ finite almost everywhere if and only of P{04)=1, and ‘é-.é«:{ﬂﬁmta
almost everywhere if and only if ©{u)=0 for some and t?ae.?\élm atl >

In faet, i) =J e uF L P{ ),

AN

A\
and for .0 this converges increasingly to \ ;,\

X

J dP(w) = P(S“}

. . n .
Also, sines ¢{u) is c-oﬁiﬁl‘é’t@l%} au%m?o%c? Iuglj()<u<m it i either
everywhere >0 or =0, and hende ‘the Jast statement in the theorem,

5.2, Markoff processes..,<
80
IE T is any set and fAlafamily of its subscts which is closed under
set addition A; U Agthen the point set inclusion A’ CA” defines an
order relation by\“‘u?hich {A} becomes a divected set suitable for

indexing. In gpefirst appliestion 7' will bo the half-line ( < £ < oz, and
the subaets*wﬂl be the finite sots

.C\ A=(8,....1 (3.2.1)
wh@#{eototahty is obvionsly so closed,
Q9 ~“f’e take, as in section 3.7, a measure space

(R B; o) (5.2.2)
and denote by {RY 4 o1 (5.2.3)
the familiar i-fold product of (5.2.2) with itself, so that in particular

R'=RxRx..xR, Itimes, (5.2.4}
and we also fix a point #° of R, put £'=0, and order the points in

(6.2.1) thus: 0=\ l<tPe,. <l (5.2.5)
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With any Markolt chain density fir, ; s,y) on (5.2.2) we now set up
the non-negutive et funetion

H

s [ s v

Fi »=1
i~ 1

- J I [, 2715 2, a9 du(e®)],  (5.2.6)

E p=1
and if for BP=- B* we evaluate the infegral by integrating successively, /5
with respect to &', 0t L L, 2%, #t in this order, then the property .
JI

implies FYR'; &y =1, Thercfore

i, =R, F=H, PA(BLJEFI(BI;,x“l\\' (5.2.8)
is a probability space, and we associate it withy the index (5.2.1)
subject to (5.2.5]. Given an index > A, we dé.ﬁ%) o it by

=gt ., 2 %)

and we must, perinit the new points tI""},’: vy £, if any, to be distributed
on the lint in any manner wh&fé\f)&‘f%?."wbi husrpetg.in
0, =R &, = Bul ";:P#(B'm)sFm(Bm; 2, (5.2.9)

Fer-, oL 12 ) dvfar) =1 E27)

Ny

N
< 3

denote the points of €, b{\(:;,:l, .o, ) and those of Q, by
G- 7 Y ™
and introduce the *Pgral’ projection
\“ wp=y p=1,..k (6.2.10)
from (2, to.,({;;b\ff’-:not-ing if wy = fadw,) and we claim that our famﬂy
(5.2.8) ixminde into a stochastic family hercby. In fact, propertios
(5.1.3)(5.1.4) and f)(#,) C &, are obvious, and for the proof of the
laghiing decisive property
40\ W4 -

\ ) FI(BI; 3‘50) :Fm(fi—;(BI); 5"'.;0), (0.211)
it is enough to deal with the case m=I+1 only; as is easily seon.
We denote the additional point #*+1=i" by § and we have either
(1) g1 o ¢ <17 for some p=1, .. 1or (i) # < 5. In either case the set
Fri(BY is Brx B, and in case (i) say, a point of the set may l‘)e deI.}DtEd
by NP ) @, ..., @) accordingly, and the expression (3.2.6)
for F1+1(B1+1; 499 is then

[ o flerL, 2P s, 2) f(8, 25 2, ) de(x) .-
o B‘x n
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where the dots indicate factors not involving (s, x). By (£.4.13) how-
ever this is
f U g )
Bt

which is the original expression for FY B o) itself, as clalmed. In

case (ii) relation (5.2.7) st be used for p=I41.
Finally, the projections (5.2.10) are sequentially nraximal, and

finite products of strictly topologicel spaces are again so, and hence
the following definition and theorem:

Derrxrrion 5.2.1. The stochastic family (5.2.8) with projec w6k,

(5.2.10) will be called a Markoff process (for the initial point ; ‘31 if the
Kolmogoroff property is present.

Tagorey 5.2.1. If the underlying mensure spuce (5 .{2) is strictly
topological then the Kolmogoroff propertiy is present, f¥d dve have indeed
o Markeff process.

Ifthe process (that s, the underlying density) La\spaoe homogensoud
then {0 a certain extent it is the same proce‘ssﬁor all initial points 2%,

as the following statersents will 1mp]v in \which more generally than
before we pul 1] V_v;tl At ﬂﬁﬁzm‘}mﬁﬁg in

where not necessarily =0, ™

THEOREM 5.2.2. If the prdtess s homogencous for tmm[o-rma.ti-aﬂs

{U} of (5.2.2). and if & bowntled Buire function ¢(2,a%, ..., 27} on R+
has the invariance pm}@&y

gD( :t:‘-'L U, ..., Oxt) = g(a", 2L, ..., 2%), {5.2.12)
then there is a mzctzon Acs(tﬂ 1, ...t such that
LI | R R
< \ th’) 0w e AF P af) = A (0,8, 1) {5.2.13)
fo-af 'a\ifl'w“, and if we have in particular
O 3
\ ) o = TT éular~t,x0) {5.2.14)
=1
¢@(U‘}:" U?J)=¢9(x,?j), p:l)"‘)z' (5215)

then Agli®, 8, ---,t;).‘:—ﬁmﬂus tl)Aﬁz(tl‘ £2)...4 ﬂ(tl—l, i), (5.2.16)
Proof. By {4.4.18) we have FYUBRB; Uz"y= FY{B; x"), and if we

denote the integral (5.2.18) by A4« ¢7), then the substitution
¥ Ulx?), p=0,1,2,...,1, leads to

Agla®; i) = A 4(Us®; 1),
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and gince a truasitive group earries any point #° into any other point y°
this is indecd independent of 2. Therefore, we have

-

(@, ) fln s s, y)dely)=Ag (r,5),
i

and (5.2.16} lullows if we evalnate (5.2,13) by integrating with respect
toaf, zf 1, .. w!in this order,

If {5.2.2) iz the Euclidean £\

(\AN

with translations, for any k21, and if in (B, )= 8% (o1, ..., afwe
replace, for fixed #0, the (veetorial) compoenents 22, ..., 2 byj:-he‘- Tew
ones Syl _gh, Bogiegl .., E=gl—atL," (52.18)
=) ) - » ..,\ &/

then space honiogeneity means that we have

[oari ey =Fr,sy-2), \\\ . (6.2.19)
it oty Ll =g ..., ), gﬁ;%?l?p'x’la x?) =g ,(E7).

and bavanse of du (1), .. do ;,(:Qf,ﬁ;@ﬂﬁ(&imbiyv@&.gqu\l&ve
A8, = Fr}":é(glj _“,gi)dgﬁ'i(g), {5.2.20)

W (Eal

~ 4

\
+\|) f_{ f(gp-—l’tp; £2) dw, (£7). (5.2.21)

where B L
( N Blg=1

This gives risc Lo goyeral remarks.

Remark 1. If we\ associate the entity £” with the intervalt?™ <¢=4%,
then we Dbiﬁiill an additive infervel function and the probability
measuresfi5'2.21) lead to a stochastic family and process for auch,
whcreaé»:the Markoff process itself pertains to path a,nd.}? oint functions
‘Eiznffsh The ‘randomization’ of interval functionfs will b precented
later in & more com prebensive contoxb (section 5.3).

Remark 2. We note, however, jmmediately that ‘th? 5
(5.2.19) can be replaced by a more general distribution ¥
with the properties Fir, s; A)20, Fir,s; By)=1 and

‘density’
(-}" 85 Ag)

Flr, s )% F(s, t;)=F(rt:*)

for r <s<1, not only for a generalization of (5.2.21) which is

[ lf[lﬁ‘(zﬂ—l,eﬂ; d_fig,_,,)ﬁ'(ﬁ—l,tzzﬂg;);
o B

frp=1
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but also for a generalization of {5.2.8) which iz

i—1
1T Fev-1,i0, dBp —e? Y F(it-4 44 Ba—at-l),
B3

and we have then in particular
Ay (177, 17) = r,ﬁf, e Bt 80 ).

Thus, if our Euclidean chain is aiao stationary, Flr,s; Ay=Fls—r; 4),
then in forming the integral N o
2 N
A¢ (t,p-l t'p)El‘l;ﬁ (tﬂp__t.;r—l):f ¢r C d F t-u_,t-p—l; 5) N \".
we wil be able to employ the tnost general subdwmble fgmcwx
{#{r; 4)} as previonsly analyzed. All this applies of cQwae ulzo to
localiy coropact Ahclian groups other than &,
Bemark 3. Next, theorem 5.2.1 applies to (5 2.1s0 tha.t a Mmiting
apace exists and we claim that for a density Qo,} 9 the quantitics

{5.2.18) are stochastically independent in thc \11:3(‘ that

E{g (£ ... &, «EL} IIEfgﬁ (3. (5.2.22)

www.dbraul L bgany .org-1mn

In fact, as is easily verified, thisis pr,écwely the meaning of the relation
(5.2.16) now.

TAEoREM 5.2.3. Comer,s&{;, if we are given a Markoff density
Flr,x; s,y on (8.2.17) u!’a\ wrontmuousz-n(x ) and, wheai 18 restricthive,
sa.éz-s_ﬁes ﬂ(} af; ¢ L4y =0, (5.2 23

and not only 203 f&r}a.ﬂl 7> 0 and all y in £, and 20 fived, and if for ol
O<yr<s, the tujo{wéto-rs

O t=al—w, p—afs)—ap)
fre st()gf%@acaily wndependent on (5.1.18) then f{r,x; s.y) depends on
7,8, Yo only.
’“f:-rciqf . Put 2°=0, say. We then have
B{E) pin)= [J HEV BN IO, 0: 7, E)fr, £ 5,E-+) dol) del),
BB = FI61E) 1= [ $(6170,0: 7, dot@
B =B = [ ot decn)

where HEH S [f(() 0: ) f(r, & s, E4 ) do(E).
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Now, if we ave 1o luive
1@ (8) Yrln} = B{G(E)} £y (m)}
for all bounded aire functions ¢{£), (), then this implies
.)r.l{\.l }: '1 lr.-' \E)jl{;’l-' ..52 S’ g—"_?j} :f((')’ 0; ?‘3 g)f(r’s; ?l?)}

exeept fur a sel ol measure 0in (£, %}, the sct depending on r, 5. How-
ever, by our specind assumption (5,2,23) we can divide through by

fl0,0; 7,83, so that

f(f',.:"':;a‘jg-i-?j‘):f(?‘:s;'??}, ’.\‘\
and, duc to the continuity of the function on the left, this is precigely -
the assertion mnde in the theorem, AN

Remark 4. In all classical and modern populaticen (g.r{dt fission)
problems kuown, it i customary (and prebably alse a-_pp}«)})ria-te) to
assume f(r,:; s, ) =0 if either a<0 or y<0, which\i"an outright
violation of our special assumption (5.2.23), andyinthe solutions of
these problems the random increments {£7} argustially nof stochastic.
ally independeni, which is in sharp contrast™o the solutions of the
dassical diffusion problems (Brownian mgtien),in which thestochastic
independence of the “inii nit-e;simﬂ*’fiﬁéf‘@iﬁ'éﬁhfhﬂ-bbgﬁn matter of
axiomatic postulution, traditionaliy,

Remark 3. Stitionary Markeft chains as such,

1,3 =Fis—rs w )

even nonhomogs l(’f_llli*_‘v(_)n;, were casily generalized in chapter 4 from
the halfline 0<{<»™to a multidimensional time variable in an
oetant, but the c%{g*?mponding generalization of the processes Offeljs
& difficulty whiéll we cannot readily overcome, and the difficulty is
this that neXaitler yelation for the indices (3.2.1) can be thon suitably
introdugddMor which the decisive property (4) of definition 5.1.1 can
be regmited. Paul Lévy in defining what he terms a ‘raultiple Markoff
]?%mﬁs’ has alwn ('am_.-c;uutered a éertain difficulty in actnally estab-
hs‘ ing the existence of his processes, and it is a difficulty of the same
oigin perhaps.

5.3, Length of random paths in homogeneous Spaces |
If we rostriot the poitts ¢ in (5.2.5) to lying in an opexn oF c,k-)flea
erval 0<t<q or O5t<a, then the resulting indices are zi(m in
direated set, and the previous constructions agan apply- p n:(.)ijlia.r
S¥ery cage the limit space Q: (w) can be identified, in & I&
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manner, with the space of paths w: z=2(f) in R originating at the

fixed point #% 0 g{<a (or Za) and x(0}=2a°.
We now take in 0<¢<1 a Markoff process which is space homo-
geneous and for which there is defined a non-negative Baire Tunction
pir ;8,420 (5.3.1)

for0<r<s<l, 2, ye R, with
Pl s,y +pls, y; b 2) 2 plr,a t, z), Ogr<s<t (532

(trianglo property) and O\
plr U, 8, Uy)=plr, z; 5,%) A5.3:3)

N\

(homogeneity), By theorem 5.2.2 the function A\

Alr,s; u):f e T Yy fr s 8, v, "fy{?&{j {5.3.4)
R < }

is indepondent of ¢, and in conjunction with (5.%2) it also implies

Afr,s;u) Als, t; u) < A(r, & » (5.3.5)
Since also 0< A(r,s; )= 1, if we put :.t.’
Afr,s; u) = B89 (5.3.8)

then the new function 5178 1351.31.1.1 }'I?I;ary'org'm
Blr,s;w)20, Blr,s+B(s,t; )2 B(r,t;u),  (5.5.7)

and thus is, for euch %, a gi.é\’canco funetion on the interval 05t <1.
If with the indices (Q{’:I}’ we associate the functions

I
L= X p 20 ); 0, 2(t7)),

AS
then these falliader theorems 5.1.2 and 5.1.3, and we are introduecing
the limit function ¥{e) and the Laplace transforms ¢, (u) and ¢(u) as
in these phisdrems. We note that the number F{w) which is defined for
almost 31 o, whether it be finite or infinite, is in the nature of a length
of fhe puth, even if the underlying distance function (5.3.1) should
‘igdeéd involve the variables r, s, as we have permitted it to do. But
we ought to point out thal we know of no case in which it does so
depend without F(w) being intiite for almost all o,
By thecrem 5.1.2 wo have
?

Palu)= T 4@»-1,t7; ) =exp I:" i Bitr1, 19, -u)],

B=1 pe=1
and thus for the function ¢(u) = L{e~vPl e can write

Plat) =g—t08, (5.3.8)
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i
where Clu)=sup, 3 BE*1,17; u) {5.3.9)

=1
fs in the nature of a total variation of B(r, s; %) over the interval
0=r<e=1. (3.3.10)

Algo, if for cach 0 <r =1 we introduce the corresponding variation
Or; w) over the interval (0, r) instead of (0, 1) and put C{0; ») =0, then, »
Clr: u) is monolonely inereasing in » and we have

Ny O
iy = C(1; )_J d.C(r: u), O
0 3
of course. Frequently O(r; ) will be absolutely contir;u?us in r, so
th srivative oS
at the derivative AC(r; ) )
Dir; w)= =0 \
N
exists s.e. in 0 =+ = 1, and we then have \ v

{2} e‘(pJ; DQ‘ u d?;:l
W @biaullb]“ y.org.in

Also, if f(r, &; 5,4} and p(r, z; 5,4} both depend on s —r only (station-

arity), then we have A{r, s; W A(s—r w), Br,s; wy=DBls—r; v) and

O{s)—C(r) = C(s — »); and Blws'u) = D(w) is independent of raltogether.
Theorem 5,1.3 imme@-‘cély i mphes the following criterion:

TurorEM 5.3.1 .,,ji’:ﬂ‘(.?(uu):oo for some o> 0, then Cluy=o0, and

almost all puths Pabe infinite length. If Clu) is findie, then
»\’:\ P(§M =e~C0D
\ Imost all paths kave

i8 fhe mm'}n.s of the set of pathsof fi ,f‘mte length, and almost alé p
.ﬁmie’\le}? Gtk if and only if C(0+)=
”‘F vom this we will deduce as fo]loW‘i

THEOREM 5.3.2. If for each e>0 there is @ 8>0 such that for <4,
S~¥=8, we have

L—A(r, 8; u) <e(l — A(r, 8 D)} +els—7) (5.3.11)

then either abmost all paths have infinite length or almost all have finite
lengih, . Tod

Condition (5.3.11) is fulfilled if the disiance function (5.3 1) és boun
o R, 312
plr,; 8,4) S Po (6:5.12)

BHA
9
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or more generally if for some py > 0 we have

f eI flr v s, y)dv, Se{s—r)  (3.8.13)
plr, a; & W=p,

for s—r 2 6=4(c).

Proof. We will denote by My, Mo, M,, ..., cortain finite positive
numbers which are independent of 7, ¢, ¢, 8, the latter all in (0,1). By
theorein 5.3.1 it suffices to prove that

N
Cw)SM,, O<e<I, (5.31%
implies lim C{u)=0. Q'?l\é}
w0 @
Now (5.3.14) implies B{r,s; v) £ M, and from :‘:fg
l—A(?‘,S;1)):]_—6__3("”'3”"}, ,\‘,\’...

we thus obtain AS

My Blr,siv) E1—Ar,8; 1) 2 ﬂfsBQ,ﬁ; v {(5.3.16)
Therefore AN

M, Blr,s; u)Se(l— Afr,s; 1)) +e(s—r)\Zedl, Blr,s; 1) +els—r),
and hence o\ bd
i AW .ﬁl‘b”?_ rrj L
3, 3 B o W L S B DB e 5 e )
»=1 ‘?'é,l" p=1
LA O(1)e=cM,.
N\
Therefore, M, (H{u) gﬁﬂc{é:y}.\ich Proves (5.3.15). Next we have
o)
1—Air,s;u)= | — &%)
& . .
::\V: =J _ +J =J (r 81 w)+J o (r, 85 u)
\M A3 £
Howeve\g}fb’r pEmand »=1 we have
a.n,f}‘lf;gﬁce Myopl—ewg Hgup, (5.3.17)
‘"\ o
\l'_A(r,s; w) S ud, [ {I—e=r)fdv+J, = wM {1 — Afr, 7 1)) +Jo,
W AEm '

and by assumption (5.3.13) this implies (5.3.11) as claimed.,
Noxt, for stationary processes the reader will easily obtain the
following statements from the definition of the symbols,

TuporEm 5.3.3. If owr process is also stationary then either
i 46— B 1)

i 2 im B 1)

o
€10 € eij0 € ’
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in which case ({1)~oC and abmost all paths have infinits length, o,
howener, we huve

o L—d(e;w) . Ble: _

- s _ im B u)zj)(ukoo,

) [ i .0 £

the limats excisting, cnd almost all paths have finite length,
By applymyg (5.3.17) and theorem 5.3.2 this easily gives the

following conehision: 2\
TrEOREM 5.3.4. [n the fully homogeneous ease, if we have A
¢\
P2y S py o)
on B, or more generally if for some py>0 we have N
" P £7)

J gy do, =o(f), t—rO,."\\\.
ot W pa v
then alinost @Il paths have infindte length or Jiniielength depending on
whether T AV

Lien ples e yhfe; w,y)dtyRdo or <ot

£ i0R U p W W

Ifin ¥, we are given a t'llﬂ‘%l}%}éggggﬂgﬁ,ﬁgqg‘%ﬁg_i‘[}f{t; z;}y with

transtorm {e=*2} then tor the ovdiftary distance p(#: ) =2m | y— x|
we have NN

At ) Qt o2 1=\ ) dv,
Ex

and theorem 5.3 4 con 'Kb’e;ai.pplied to this expression. However, by
Fourier trunsforms this 1s also
p O ue ¥z dy,
- f | = W13 77 ik e e FETT TS
g 50 Lz “}}Lk (Wit .. o)
»od an arl}\lf\;;{;~0[, the behaviour of the difference guotient
O
N Lie(1— Afe; w)
fm\ﬂfﬁﬁht‘ latter expression is rather easier to underfake. Under the
tegral sign we then have to deal with the expression
1 — pswial \
=),
eyr{a)
aod since for ¢ )0 this converges majorizedly towards y(x), theorex
2.3.3 leads to the following conelusion:
THrORRENM 5.3.5. If i¥r(e;) is real valued then

. . Wr'{f(“j)d”a_
D) =729 ik + 1} f e e L
Bk 10
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wnd almost all paths have either infinile length or finite length tlepending

or whether Wrlon Y de
{ V( 1 3 A =0 or < o0,
Ex (]

- L S ST L

In particular if (x)=1{| « |} depends anly on the distancs

|2 = (e +.. o)t
then the allernative is ~
(v} .'i ‘ d &
f PO o <on; X
LA )
and thus for the stable process (=2 we hove the regmils thit
irrespective of the dimension of the space we MY exPech -E.ﬂ:ﬁ’;'ajgfy.‘a englh if
12922 (from Guuss’s process to Cauchy’s process, fincl-zc;;?-ue):, el foor
0<q< 1 we may expect finite length. AN v
If o) is not real valued we have at any rate the tngeniplete alternative
that almost all paths have infinite or finite Ie-n,gth{s{gpendmg on whether
Reorfa,)dr, " Ll | dv, o
gp LA |o]irr ™ P AP :
The following supplement might hevaf sorne {nterest-:
) 1

- - www dbraulibrary org. _
YArorEM 5.3.6. If 3 (o) =/ SP is reil valued then abmost all

paths have finite length if and-Gitly if the Gaussion part is missing,
=0, and also the distribution Junction F(A) in the represeniulion

&P(q&ﬁq (1 —cos 2m(a, £)) d, F(£) {3.3.18}

w

18 such that we hagp, J €] de Fif)<cc
P\ 0<if|<1

Jor the first ozhﬂﬁ-l & |, and not only for the second power | £ |2 as must be
the cuse wtamaticully.

P-rriqf. I fact, for W=£0 the integral is always infinite, and for
(5.338) it has the value

a\Y
N/ | (l—emienyg, peg),
£, i
» v &
whence the conelusion,

Finally, wo will very flectingly comment on a certain type of process
which arizes in the following manner, Take a continuous funetion
Wil ;) for 0=5t<o0, xeE,, and assume that e—witi e jg o charac-
teristic function in &, for cach ¢ and 4> 0. If we approximate

[ tr(t; ) dt
W7
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by Riemann sunws i tollows easily that

exp [— J N a;-}ds]

is again a characteristie funetion for 0 £#<s. Assume that it is the
transformn of a density (this could bo generalized) and denote the
latber by fir,« ). Qbviously flr,s;¢)#f(s,t*)=f(r,¢;*), and thus
fire; g, —2) is o Markoft density which is space homogeneous but not
stationary. If sirtistios the pair of differential equations

¢ ,I’(; Six {
It Dy DI Ne
Jir,5: 2) O
of{y,8; @ - AD
(r.;_:irir('? Dl:"'3'DJs‘.)fs .'""\\’

antd the statemetd we wanted to make is as fOHOW{'

TisoREN A.3.7. Swbject o secondary assw«ptwns the stetements
of Theorem 5.3.5 rewarin fierally in force af WRput nov;
"l \
W)= ‘ yr(r; dﬁwaM‘a‘uJIbpe(f ﬁfr.}]dg’m
Jo

. . y _wgllry ) dv,
where  Dir;u)— g 411 P
R Tt !\‘4—] ? J B (?zz-l-cxg-l- R

5.4. Euclidean stoch&tlc processes and their characteristic
functionals PAY.

X
We take o dur & tul icumlv of Enclidean spaces {0, 1 with connecting
transformat; 15,m.~.~ {,, as in scetion 51, giving rise to a pro] joctive limit
: (w), (m&\\u assume that cach f; , is of the form

i _ 5.4.1
w\},\, '*'ﬂ=q§1€pqu, 1}—1,..-,5, ( )

Whire 0= 1 (i) and Q= F,.: (y,). We note that

o
rank of matrix {¢,q =k

e £ is mapping into all of ,, as always agsumed.

With eacl viven Oy ()= By ( ) {5.4.3)
l ]‘ J;r 0ir

©NOW associate it Fonrier anlytic dual

!.} {L’i)\) F,r ( )7

N

7N\, ¢
N\
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and correspondingly with each ‘inverse’ mapping (5.4.1) the contra-
gradient “forward’ mapping

t
Fa= Xy g=1,...,m, (4.5
p=1
for which wo alzo write W= 0, (5.4.6)
and we note the following properties, the last of which is a consegnence
of (5.4.2): N\
Lexmia 5.4.1. We have A ¢
oA
GouGua=gy Tov p>p>A, CNB.LT)
I T s,.}‘ ) )
and Z}xﬂaﬂ :Eym’{jar: AN 4 (S
pn=1 -1 &
S0 that (Flu). o) = (y, g(a)), \/ (5.4.9}
and if for two points B, @} and @A, we hoga i ()} =g, (03) then
Y=, (v

DEFINITION 5.4.1. The (forward”) progheiive limit

O (\@ﬂgﬁm?jﬁgg’}&}m_g@gﬂ, (5.4.10)

ir defined as follows. A point & of }:t-"is'z'a.ny mazimat collection of points
o o) (5.4.11)

{ealled its “components ’}.&figi\ a subset AYof A which depends on & such
Shat (i) for each Ae A%he collection contatns one and only one point
Pl . A auy . N - . 1 ) ;
iy of €3, (i) if A, Ay 8A? (where A, = A, is permissible) and A, > A,, A,
then A e AV and\ i} for the corres ponding components we have
x’ \Y, A =~ b
:\:.\ Ia2, 80,0 =g, 3, (85;) SR (5.4.12)
'I‘HEQ(R}I»I“ 54.1. (i) If e points of O have O COMPONERE i common
then they wre identicnl, qnd every point &, of every () A, © the component
Q& Point & rwhich can be desoribed as Jollows. For every A A, the poind
Cal A ’ . “ . ’
y=T13,{;,) i @ component of & and if for an index P A = Ay and
Lo, ] o
& pont o, @ 5o huppens that 9’&;&(‘?’;&): 4 ,ln(fbiuj then it is likewisc @
component,
(ii) The -?’-"ia'pp'i?’bg ang’ln(aﬂu} 8 t-yaﬂ,_gfo?«ma_tg:on Of Sg)ln info (1
such that =
gwﬁzgmg&gﬂi (0'4"13)
Jor A< p,
(iil} For any w41 points 9 in fl, r=0,12, .. a0z 1, there iz an
index A for which the COmPonents 633 extat simulinneously, and O oan be
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made tnto « veal vector space in such « manner that for any such com-
bination of potnds and an index A the relation

A =gy @ .. e, B (6.4.14)

in 41 implics the velation
W=, Wk ... a, 0%

in & 1

Thia ean be proved readily with the aid of lemma 5.4.1. Also, the
original projective limit € can be likewise trivially made into a vector
space in such a manner that the given spaces (2, are vector proy,
jectionz of it. 1f now we introduce the notation o\

N\

4 \". ) _
(05, 820 = 2wyt Bas)
pe=l )

$
and recall the consistency relations (5.4.8), then the Tollowing state-
ment is easily proven: O
TrEOREM 5.4.2. On the product veclor ap{ce,\ﬁ x (3 there exists a
bidistributive [unctional (w, &) such that wekape
(0, 8) = (0 02) (5.4.16)

) \a\rww’.’dbraulibl'ar org.in
for every A for which the com.pom-nit‘@ﬁ axests. y-ore

If we take a uonempty diresied subset A of A and introduce the
corresponding limit spaces ;4
()= il@u&)r, .(A_}i ~——lim,l Q:l; }LGA') (5'4 17}

then ' can be maPped vector-isomorphically into a part of & by
assigning to a puiith @’ the point # having with it any one component
in common 11@{&'5;\’. The corresponding statement for the inversc:
limits iz @‘t}ue, bui nontrivial, and if in particular we choosz? fm"A
a direcigihtequence {2, } then this asserts the sogquontial maximality
1139@&@511 theorem 5.1.1,
M:C}\fEOR B 5.4.3. With each o € QY there can be associgted af least one
\}_Go?nt € Q having the same components as ' for Ae A'. o
Progf. For fixed o’ and variable &' wo view (o', 0') 838 diStI:Ibutlve
functional on (V. Now €)' is a vector subspace of {2, and since we
&re not concerned with ‘completencss” or “closure’ of the gpacos and
functionals at all, there is a very gimple general theorsm a,va,l]&‘ble
{based on the axiom of choice) stating that any distributive opembwn
from a vector apace (V' to a vector space of values ¥ (Whi(f\h foe us ?m
real numbers} can he extended to any vector Space {0, We pli::k
one such extension and denolo it by (o', &). Now, if visany index in
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thelarge set A, then for the points & having components 3, = (V10V}
in Q,, = #,: (7) the functional must have the familiar form

zll:/l-l- s +zﬂyﬂ’

and if now we put w,=(z,, ...,2,) then .} = is a point liaving the
property asserted.

Dermvrrron 5.4.2. We call a stochastic famil ¥ Euclidean if each

given probability space has a Euclidean structure \
L=H; FH=o,; PUS)=Fd), (5:4.18)
'S

and if all conneeting transformations [, have the affine sthucture
(5.4.1), with origin going into origin. RS

By theorem 5.4.3 we may now assert as follows: \\

TurouEM 5.4.4, Any Kudidean slochastic Familydaihe K clmagoroff
property so that a limiting probability sprice )

QP L0 (5.4.19)

ewists, and the resulting stochastic process il be. called “ Buclidean'.

For each A, we now introduce the dharacteristic function
www dpraulibrary org.in

palos)=| gLl AR (), (5.4.20)
By
and, in keeping with (5.4.15{;nwe write for this also
gﬁg{zé{)’}:f e~tmion N g p, (.4.21)
\ 2

But now the followine statements become obvious:

i - 4 N N\ - . s
Trrorey 5,405 () Our Euclidean process can al3o be characterized
‘dually’ by :a»(?@'mcted Jamily of deta

O h=Eie): gdy=gio,....a), (5.:4.22)
wit{u.@ﬁmecténg affine transformations (5.4.8) of the form (5.4.5) for
R (5.4.2) and (5.4.7) hold; the Junctions ¢, (o) being characteristio

Juhctions which are linked by the identities
¢A(11}) 2?5;¢(ﬁq) E¢ﬂ-(gﬂ)\(“}}: (5'4'23)

or written differently gﬁa(@,\):gé#(gﬂ(@}),
Jor X< p.

(1) Onthe limil space O there 54 given a function () such that for any
component &y of any & we have

PE) =Py, {5.4.24)
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and we can also write () =J e~ 27l 6} d Ple) {5.4.25)
a

= [‘ e 2miln N AP (@),
Jm

the function (w, &), and hence also e27459 being a Baire function on

(5.4.19) for euch o,
Derryrion 5.4.3. This function ¢(#) will be called the eharac-
teristic functional of the given Euclidean stochastic procesa.
'\

N

5.5. Random functions
Dermvizron 5.5.1. On s general point set I (f), & fafrﬁﬂy of its

. . \ .
subsels f1={A} will be called admissible if corrosponding to any finite
numbers of ite elements '

Aply iy RN (5.5.1)
{which we will eall a wnion) there Is another .ﬁfiite number
AL AL AL {5.5.2)

in which any two Al A] are ﬁﬂﬁﬁbﬁn Lt SI'QS@gh e then call
a sum) such that each Ay is a point’s,’et"sum of certain A which we will
indicate by writing o N B
A, ﬁ\\;}a;q, p=1,...,1. (5.5.3)
+83
Wenow take a fun g:t%}l X(A) on D with real values say, and we call
it additive, if every yelation (5.5.3) implies
\X
A X=X X (5.5.6)
' M g=1
An adﬂ%ﬁible family I? arises if we take for A any and every .single
POiPtgfd%' T (only), and in this cage an ‘additive’ funo.t-ior.l X{A)is any
pointhinction X () whatsoever. On the other hand, if D isa t?’-algebr&
}fs‘cts then our X{A) is an additive 'set’ function in the familiar sense;
and finully we may tako, for instance, on 7' ={0<t<och er D the
family of intorvals A, = (o <t = f), either for all real end-points &, Jif
or only rational ones, or even only diadic ones /2", with X(A) being
then an interval function in the nsual sense. 5
Remark I (Tmportant). A function X(A)on ‘A’ whether ‘real-value
or later random-valued or Banach-valued, will lays be intended fo
be additive as in definition 5.5.1, and sometimes, but not always, we

will recall this for em phasis.

N
oA\

Q"
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Given D, weintroduce a directed set A ={A} in the following manner,
An index is any sum
e B A= (Ags By oy Ar),

(5.5.7)
and if we are given another index
H={AL AL ., AL, (5.5.8)

then we put A < pif each A, of A Is a sum (5.5.3) of elements of 4, with
soma elements A, left over perhaps. Thus, if we view A a8 an (incom- ¢
plete) partitioning of T then #> A means that » refines A and adds
some cloments, perhaps, Thisis indeed a directed set, und, infa cE’, "t-h.é
crucial property (4) of definition &.1.1 is fulfilled because for ahy two
indices A; =(4} ), A= (A} ) we can form the union {A] , ?Ey;'}'}.a-nri by
definition 5.5.1 there exists then a sum pr=(A,) such thap'dy< u, A, <
simultancously, Frequently the set A will contain < ~E’i’}set A’ whish
will be a directed sof likewise, and thus be ‘admjsgible’ in the forth-
coming theorom itsolf, For instance, if the set, TAtHCH is a sum (5.5.1},
then the subset A’ of indices which refing’¢#,5.1) is of this kind, wnd
a very suitable dirccted sct of indices it i€, )"
If for a function X(A) we associate with two indices (5.5.7}, (5.5.5)
the values www.dbraulibravy-organ
31=X(A1}:.-}'-§ o= X(4,), l .
Ny (5.5.9)
4= XU, = XA,

X A\
then eorresponding to (5\5,.,6) we have

."Fm"’_.-ym‘*‘-“‘l‘?/ggp, P=1,...,z, (5.5.10}
and if we put thié}iﬁ the form
" ".\ o R ] .
O\ f,w_:.’t,‘i,: 2Ot p=1 00 (5.5.11)
\'\\ " el

wherend,,; are certain constants=1 or ), then these transformations
b@i}fﬁ requirements (5.1.3) and (5.1.4), among others. We can now
“apbly the results of section 5.4, and we first state the following
theorem, the first half of which is the casy one:

TruoREM 5.5.1, If on an admissible family D we are given an
additive function X(A),

XA L+ A =R+ + (A, (5.5.12}
whose values X are random variables on some given probabilily spuce

(Q; &5 1, (5.5.13)
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and if with cvery inder tn A (or only some A') we associate the Buclidean
space =y, A=t Py=F}, {5.5.14)
where F, 4s the joind distribution funciion of the | random variables
m= XA, = XA then these Euclidean spaces constitute o
stochastic fanrily for the transformations (5.5.11).

Conversely, if we aie given D and for every A a probability measure
FA)in Ey, and if they are linked by the given transformations (5.5.11)
on D, then (5.3.14) constilufes o stochastic process whose limit space

Q consists of oll numerient additive functions w=X(A), O\

XA AY=X(AD 4.+ XA, (55.19) ’
and for euch A the set function Fy{4) is the probability for {?i,e‘ifmlm
r=X(A), ... 0, = X(A) to lie in the Borel se A. s

&

Remark 2. In fulfilling requirement (5.5.12) we maﬁ?‘a}imit excep-
tional sets of measure 0, the sets varying with (At A for the
constructed random function X(A), howovar,;. ’5.15) is fulfilled
without exception. Thus any random funetich\ may he replaced by
another having the same joint diatributiqniﬂrﬁc-tions for which {5.5.15)
is fulfilled withont exceptional gels, b tljc‘:;h -i??jg-'l randorn 'ﬁfa-z’iables are
on & probability space altogether Jifferent trome e dridinal one.

Also in what follows the symbb}.oX‘{ﬁ} without the symbol ‘~ will
frequently denote an arbitrafinadditive) random funetion on D and
not necessarily the one cgg@‘ucted in theorem 5.5.1.

Remark 3. I the valteof the funetion X{A)isa k-dimensional vector,
then not wnuch neerd Keghanged, provided we replace the dimension i' in
(5.5.14) by & andhEhen take for Fy,(A) the joint distribution fanction
of the variony j&g‘tﬁponerlts of the [ vectors X(A,); and f'f“" k_:2 the
case of com{ﬂ}};{lvahled random finetions is fully ncluded in this way.

Dermgton 5.5.2. For given D a step function on an index A is a

Tea) fQﬂE't.iol1 on 7 which (or fe A, has a constant value fp, p=1, s
‘m‘i for feT— (A, +...+A;) has the value 0, and thus can also be
Ttben ay

: -4
hit)= X hpon, (i) (5.5.16)

=1
where w,(t) is the characteristic fanction of the set A, .
For given A, all step functions on it are a vector space. Also fcix
#> 2 a step Tunetion on A is also one on g, and §ince {4} is directed we
obtain the following statement:
Lrmva 551, Al step functions together oM
which we will denote T

stitule a@ veclor space
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If X{A) is a random function on D, then for a givon step Muneiion

{5.5.18) the sum 2 _
3k, X(4,) 5.

p=1

=13

A7)

s independent of the special index A used, and depends therefore on
the step function A(2) as a point funetion on 7' only.

Derrwrriow 5.5.3. For any ke L, we denote this value by

[ hyaxe = f h()dX 55,180\
. .

Jr
and view it as a Sticltjes infegral then. O
I now we put h,=zx,, F(A,)=z,, then (5.5.17) is the sumly
Fycty + ..ty ay, ,'\‘
and theorem 5.4.5 implies the following one: v
TrrOREM 5.5.2. The space {3 (@) duat to ir’,-e\\spa{:e Q of theoram.
5.8.1 can be aptly represented by the vector spmeeLy, 5o that

N\

(&)= | AIX (5.5.19)
www.dbratii] E;f;‘m%y org.in
and ¢($)z¢(h) =¥ {E}gpf;- 2mi | Rt dX:” R {(5.5.200)
S Jr

and this has the same value ast

R .
E{qu’[—f&n-i" ht) d)‘i:r},
N z .
where X(A) is any GHher random-valued additive functions on 1) having
the stme Joint disigibution functions F, (A} as X(A) dtself.

Remark 4 ~1LX(A) is vector-valued, then nothing else is changed if
we also maRe hit) voctor-valued and m {68.5.17) interpret kX as
h’_X'—f—lﬁ‘.?{”+...-l—?a(k}X”‘?, and for £ =2 we may also write for this
k‘}i-f:iéx’ where h=1(A"4+ih"), X = HX'+iX"), so that then

A (0, &)= f hif) dX + | Ry dX.
Ky o T

W

We now assnme that there is given on /) a finitely additive measure
(A} =0,
()= Mg+ A) = 2(A (A,
and we are iutroducing the following definition:

DerixtrioN 5,64, Given {1, #{A)}, we call the random funetion
X(A) a homogeneous process, if there is a function {z), —oc <z <o,
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as in & subdivisible process, such that the characteristic function of
the distribution /(1) in (5.5.14} is

B, ) = expl — oA Prlom) — . — o) Pl (552D)

The randan varin bles X{A), ..., X{4;) are then obviously stochastie-

ally independlent forany digjoint Ay, ..., Ayin D Algo, if T'=(0<t<m)

and A=A, = (2~ 1= f), then this homogeneity is the same as the

(fall) homogeneiiy ol o Markoff process if we interpret X(A) as the

increments £ —o{p)-a{x} of a path ={f), as was already staied in |
W

retnark 1 of section 3.2, \ ™
For a step funetion (3.5.16) the sum W
! N
p%lu {kv) Jt'](A'D) ' 'M:\'{...
cant be desipnatied as Lthe symbol '
" K7s\ -
Wr(B()) dy, v (5.5.22)

Jr \S
~and we now have the following atatement \J

THEOREY 5.5.3. For a hornogé‘ﬁ‘i’fr}’[eéf??«?&h@@(’&)ﬂﬂ@ iharacteristic

Jenctional hees ihe velue

o =p\p[ \-f\ g dv{l, heLo, (5.5.28)

so that for instance fag \Q‘x e [symmetric Glaussian homogeneous

process| we e
C \ é(h} =exp l:-—j h(t)? dv:| s {5.5.24)
¢ T
and Jor i *{*‘:\ 'f’.- O <p<2 [symmetric Lévy homogeneous process]
we have R ) -
R\ n hy=exp i:-—J | Bi) |Pdv:I s (5.5.25)
~ ) .

yoof. By (5.5.20) and stochastie independence We have

96{}1.}:}3{{.. Erra'ihl,,.\'r\-_\p)}= III E{e—witht&p)}

p—=1

ORS )}

IIMH

— 11[ gty ¥itpl —eXp l:
p—1

and this is the integral (5.5.23), as claimed. _
Remark 5. Tr X(A) is & k-vector, and correSpondJDgIF

N
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then {5.5.23) generalizes to

@ik, .. B =exp [— f W(BAEY, ..., B (r.’--v:l, {0.5.26)
g
and if, for instance,

e
Plod, o aky= 3 e a¥ar> 0, {5.56.27)
»ag=1
then GA, ..., ) =exp [_ f Se, AP (1) ha(t) d-v{t):l. (5.5.280<

oA
Remark 6. If all A’s are individual points so that our functich, 144
proper point function X(Z), then A=(4,...,,), aud {3.5.19) is Winite

i < 3
discrete sum 3 A, X(t,) according to our general definifieh 5.4.3. If
=1 v

now 7' is the continuous interval 0 <{x1 say, tha(bae would prefer
having an integral L O
MyXma O
| moxo &
instead, and we would like to point out thétj;.’this can be so obtainad by
adjusting the stochastic Process ‘Y[%}i%s;éjf Zather than modifying the
> oAb O Tatt DL
definition 5.4.3 as such ™ ]‘.}H"ac%, i ifn;é in%%gragl (5.5.28) exists for such
simple noncontinuous functionsl@s are step functions on intervals
A,z then by putting A{t) = g ’g(&) we arrive at random variables

)
\{;’X(t) di=Y{A,,).

They constitute g/f“é;ﬁ’dom interval function, and for a step function
A{f) the integ?a{ {5.5.29) can now be written as the Stieltjes integral

'S .
\\ f ] RydY

SO

{5.3.28)

agsg)@iné-t-o our general definition. If, therefore, X{t) is such that
Laveraged’ valucs Y{A) aro o fair substitute for it {rmore general
rahdom functions X &) wounld hardly be sufficiently ‘observable’ at
individual points f to be of interest stochustivally) then the ex pression

E {exp |: —2mri Jﬂl h(E) X(t) di:”

may be eclaimed to be the characteristio functional for X(z) itself,
indirectly. :
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5.6. Generating functionals

If a joint distribution function Fy(4) of random variables X, ..., X,
is 0 outside the closure of a proper cone Cy, then for {z,, ...,2z,} in the
{closed dual) cone #, (or more generally for complex (z;) whose real
parts lie in Z;) we can introduce the completely monotone funetion

~

Wiz, .., 2e) :J _grimErh-ia 28 (),
3

called the generaling funciion of Fy, which by its real values already

fetermines F;, and which for the complex values z,=2mia; is .1{]1%“.

sharacteristic {unction {tself. In particular, if X,,..., X; are alh20
{as they are decmed to be in *population’ problems), thensC'; s the
standard octant & >0, ..., >0, but we do not dema{mi ‘that our
octants be 20 nornialized.

If in the case of a Tuclidean stochastic processgach FI is ) outside

a closed cone (‘;, and if for A < p we have \x\\
[T =0 N0
then we also have
0 have # g:”'igwlg cﬁ:erauhbl rary.org.in

For the points & in a certain ‘eomed ‘of'the gpace L} we can then intro-
duce a certain funetion () hm’mg the form

T

(1’(3’"’%3\ e=2mton @ AP (),
N\ 1y

and we term it u ge mrglang functional. For a random fanetion X{A)
it has the form N

AN @(k):EJexp (—an 15 dx)},
_ »\’:. | T
naturally. }

Theol‘tﬁ;]\é 2.3 imiplies the following one:
1HEO’RE\I 561 If w(&y, .., Erlisa campletely monotone Jfunction in
%ﬂ?ﬁ}’er“ cone O, and
_?fir.i("";"li ---3:‘?1)3 j:}" ""k’
i$a completely monotone mapping from another 0, into Cy, then
xley + ¥y oo et Fl))
X (cla Cosvrey C’k)
18 « generats ng function for any (61, - ) it Co and if x(&)) 8 bounded

m Cy, then {c;) may also lic an the bozmda?‘_j of Cp.
Another, perhaps more important eriterion based onit,i3as

follows.

Q)
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TaroreM 5.6.2. Given the datw of theorem 5.6.1, if {=A(n,, ..., %) is
o further complelely monotone mapping from Crto O<f<m, and
(15 > ¥a) 18 also in Oy, then the function

Exie: +y, bt —xeF i A e, Fet Al
{5.6.1}

is completely monotone and bounded in C,, and thus a generuting function
except for a numerical fuctor,

L
Afy)

N

Progf. If we introdnee the representation O\
- '\ “
x(é‘b reey LE?-‘.] :J gl BT et ) ‘flp(u): s.". S
4¢3 <
then the function (5.6.1) is " :
: 1 — gty O
J e [, c+i,f)[ _)l() ]dp(u), v (5.6.2}
(5% 4 A

and (w,7) s 20. If (v, v) =0 then the brack {'\% =1, and thus com-
pletely monotone, and if (u,v) > 0, then t-he bracket is

G, Pty

\\’gzv'\\y bfglﬁ;bt‘&l Y. OIdg’ in

and thus completely monotongts Wlso, e~ o = gm0 gm0 s pom
pletely monotone for #in U yeand thus the entire fanetion {5.6.2}is no.
Finally, for g, =...=9,=0,45.6.2) has at most tho valye

R\
| ey b o,
Uk . » 4
it ¢/ &x |
which is x \“ —Zy 2 %1,
and thus\ﬁ}te forceC,,
By thé\se of theorem 5,6.2 it can be shown that for any completely

mongtene function XA in 0=t < oo with y(0+)=1 and y(+oc)=0the
Q‘KIJI‘\E‘ESIOD.

op= [ Lt

t
Joe 1-6itye —hwdﬁf ( f . {1 —6(t) e~"9) aft) dt)

for ()20 and 028() < #y<1 is the generating functional of an
interval function X (Bap) on the intervals (0 <t < = < ec), and for
G{t) =const. it was introduced (in its finitc dimensional versions) by
J. Neyman in a study on accident Proneness.




CHAPTER 6

ANALYSLS OF STOCHASTIC PROCESSES

6.}, Basic operations with characteristic functionals
To operate with characteristic functionals on a given dual space {
means to genceale a functional ¢{@) from given data, cspecially from

other funetionalz, and by theorem 5.4.5 this amounts to constructir}g\* \
a family of characteristic functions {@;(x,)} for which the consistendy

relations

(;'53.(‘%1)) =§5;;{9'ﬂa(“))=¢p(ﬁq) R ’(611)
have to be verified, but also nothing else, For instandg, it follows

N 7
immediately that a product [ ¢(®) of charactetiatic functionals,

o D
Oor a4 sum A N “
e iR n 2
L f".?( g)ln]((_.-j), r}‘ﬂzo-‘ Z‘?’ﬂtl’
7=1 aFl)

or lim (%), is ngain a fanctigyal, g fQninstanes, on the sume

s X T‘al'y.org.l 1
D, A’} we are given two i'll_rlct-iolﬁz'x 1(A), X*(A) with random tfalues
in the same proba bility spacegand if the two sets of random variables
(XA, {X3A)) are stochdstically independent (definition 3.7.6),
then for the sum functibf ¥4(A) + X*A) the characteristic funetional
8 the product of the fwo given ones.

Darvmion 8000 We say that a Euclidean stochastic process.is
Symmetric, or (fissian, or Poisson, cte., if ach §5(e,) 18 50. Thus, for
nstanee, aﬁa}fésia.n process is one for which

2 S

) B() = exp (Qy(B) - Gal @ (6.1.2)

Wh\\;re\'Ql(@) is a real distributive funetional on O and Qz(ﬁl}m a rea;lI
%ﬂ-negatim symmetric bi-distributive functional on (x &k and if
(B)=0, then the Process iz symmetrio Gunssian. .
We say that the process is Gauss-Poisson if for cach A we have
Qalor)=eviiopt whaore X (6.1.3)
| =y .
a3 1m {3.4.13), .
Note that if a function X(A) is a homogeneous process as in
definition 5.5.4, then it is a particular case of a Ga.ussl-—l’m%on process
83 just defined, but only a rather particular case of it.
i0

LHA

Q.
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Relations (6.1.1) are equivalent with

walo) =¥ B, (6.1.4)
and if we introduce new functions

=]

e—Falerd :J e~ dp(t),
o

then (6.1.4) implies ¢, (e} =17 &), and bence the following conclusion:
TarorEM 6.1.1, The gereral rules of subordination (theorem 4.3.1 and {
others)y also apply io ckamcteﬂsac Junctionals, so that in particuly, zw,
symmelric Gaussian process on ) is subordinate to any Gauss— Pms:(m
PFOCESS, . QO

Durrsrrion 6.1.2. For any admissible family £, o com plé:i fanetion
K(A, A"y on Dx Dis a positive-definite kernel if for my\cl‘nn plex step
function (5.5.16) we have

mE:lquK(A.p, AQ)EL‘[T&{ﬁ)@fgﬁw) 20, | 615)
K, =F8. O
We call it a Hifbert kgrgpef kfg{;dg]@ﬁ g}ryebqgmduet
K(AA ﬂ(X 1, X(A)

for an {additive) function X{A) xuth values in some (perhaps non-
separable) Hilbert space, qn&m ecall it a covariance kernel il the Hilbert
space can be chosen a?y{h Ly-space over a probability measure space,
that is, ¢
(&’ﬁilﬁg l XA} = f (A, 0) X{A, w) dP(w).

Lot X(f.}j\ibc a CGuusstan process with charscteristic functional
GXP(_.Q%;“J)- If & is a step function (5.5.16), then, cxcept for the
factonds®, Q,(0) is

o

\‘ E{(Lh(z) dX(i})z} EE{( élk” X(%))g]
= % hhE(A,A,), (6.1.6)
aa=1

where K(A, Ay = E{X(A) X{A")}. Also in the case of a vector function
X, (A),j=1,....k, (6.1.6) is to be replaced by
E km h({}"KjJ‘(ﬁs ‘;—\‘i}a
LA

where Koy &)= B{X(8) X, (A7),
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and in particnlar for £=2 we obtain for a complex funetion
X(A)=X,(A) +iX,(A)
the expression SR B, KA A

with a complex kernel o
(A AY=E{X(A) X(ANL
But, as on £, 50 also on L, an erbitrary bi-distribntive funetion S
@Qy{@) on Ly wives rise to a Gaussian proeess because tho con31sbenq2~\~
relations (6.1.4) are then obviously fulfilled, and hence the foﬂomg~
conclusion : A

Trrorex 6.1.2, For any admissible D, any positive- dsﬁnite kemel
i & coveriance bernel, and in porticular am;Hdbertkeme&Mmamame
kernel.

Wenow takein 8,: (z,) a function ¢{z}w hmh@ihe neighborhood
of the origiu ()= (N} can be written, for somes{b'l as a sum

Blory) =1+ Priec )-J-R(a} {6.1.7)

where Pr{z .} is & polynomial Www, db} raulibrar y.org.in

N

Pila )= ¥ Ay, - .m( —Zmige )™ .. (= 2mizg)™,  (B.1.8)
RO TIE EUE I PR L
and B7(x ) is of smaller orﬂ\ at the origin,
ﬁ}a —ofjal) [%]0. (6.1.9)
By taking the l%ar ithm of (6.1.7) we can obvionsly write
\:\ Bla,) =exp (Prie,) +8{as)), (6.1.10)

wherg dga,\a\h S (o) = o [(x{ }, and (6.1.10 conversely implies (6.1.7).
The represontation (6.1.10) is unique. Otherwise we would have a

r}?lciit}n Afr,) = Blay), (6.1.11)

in"which B(a,) =0« "y and A(x,) is again a polynomial {6.1.8} and
0ot =0. For some s <7 we could then put

T
)= ZO ()
where each C,(x,) is & komoge’neous polynomial of degree &Djd
Oilory)z£0. Howmer if we introduce spherical coordinates a,=Ff, | &

Bi+ .+ =1, and divide (6.1.11) by |a|* and let a—0, then we

obtain C'(2,) = 0, which would be contradictory.

I0-2
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If in & stochastic process each characteristic fanction iz of the forny

gﬁl{a’ﬂ) =exp (P.’i('xja) + S:{ (‘xpj)

for the same 7, then (6.1.1) implies

Phloes) +83(0t5) = Pl(g (o) + S e,

and because of the nniguencss just established this implies the relations

Pia)=Pl(g,()),) O
. (6.5612)
SR(OL) =S:u(ga.l(a”J \' \\
scparately. Infact, if P;(f) is a polynomial of degree # in t}}g ¢, then
Pg (@) is such a polynomial in the o's, and Sy(f) =oﬂ./§’ " Pas # 0
implics S7(g,a(2))=0(| {7} as ¢ 0. S
As wo have seen in section 3.5, if + = 2m then we Raw o representa-
tion {6.1.7) if and only if the distribution fun ctlon W .4) pertaining to
@) has moments of order < 2m, and wo t-l{’:u ave in fact
G o= J ays .. o7 ¥ (z,).
£ o\
Fory=2m+1 the conn’a‘eﬁ@ﬁiﬁﬁ'ﬁﬁﬁgﬁﬂﬂeﬁfﬁﬂﬂt in the noxt theorent
we will denote the coefficients g,;'rf.:m as moments nevertheless. The
first moments g, , , which aro Usuall v ealled means and denotod by
(my, ..., my) can always be.S temoved’, that is, made equal to zoro, by
envisaging the tm-nsla%&?se% function #(4 —m) instead of the original
F(A). Hence the followg theorcm :

TeeoreM 8.L300Y In any Euclidean stochustic process, especiatly in
wry random fusction X(A), the means, if existing, can be made equad io
zero in alldistribution functions (F (4)} simuBianeously, and the
moments,%f“rmy one order have values connected with each other by
relatiopsN6.1.12).

m@i};’f f the process has ( first and) second moments then there is another
gg?‘r)c"ess (with the same consistency transformations g,,(c)) which s
rausstan and has the same Jirst and second moments as the gruen one,

Part (ii) of the theorem is the most, comprehensive preeise version
known to us of the proposition that if in a ‘stochastic process’
(however this term be defined) only first and socond moments of joint
distribution functions are being envisaged, thon any conclusion that
can be drawn for the particular case of Guussian processes will also be
valid for processes other than Gaussian,

Finally, if a stochastic process is Gauss—Poisson, then the following
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precise deconiposition statement can be made even though the second
moments necd not exist any lenger.

TrroREM 6.1.4. £f in a Gauss—Poisson process we put (6.1.3) in the

using its inverse

aF
and f’he latter i # transformation from &, to By By _ :
is identical

“Qﬂ ban define a set function F) "A) in By such that (6.1.19}

with - ,
| (sin (e, 7)) 2 A F (),
JE

: i 5.1.18
but by the uniquencss assertion in theorem 3.4.2, relation (6.1.18)

now splits into rila)= valh) : 17) we
and alzo Yila) =y i(B). I we combine the latter with (6.1.17)
obtain

() + i) = B )

aud this corapletes the proof of the theoremn.

<

form dafor,) =exp [1Flo,) + i, + i i{a,)], (6.1.13)
as in section 4.3, then the Gaussian characteristic functions
exp [1#5(,)} (6.1.14)
and the Bernoulli Poisson functions
exp[Pie,)],  exp [¥rile,) +iyie,)] (6.1460.)
separately constitule o slochastic process each. \ \J
Progf, The velation '“.\' ™
i Y+ i =SB+ ) + R
splitg into the real and imaginary parts g
Vi) + i) =g + ﬁ(\ﬁ} (6.1.16)
Wile)= a,f,a(ﬁ) (6.1.17)
and (6 1.18) is the specific relation ,x
WWW d’b’raullbral "Y.OTg-in
L am o [ (‘-\ll’l (Ot‘, .’L‘ )2dFI(3:?
a,¢=1 }_’:I ‘.::v
si\g‘ afsfj) ﬁs f i ﬁ’ 2dFm(y
A ne (6.1.18)
Now, the second in‘mgr is
3
’\J' -,m( > otp??p)) AFpu(4)s (6.1.19)
’\ E p=1
wherc '\\ Ecwyﬂr’
'.\ a=1
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6.2. Convergence in probability and integration

Convergence in probability was introduced in definition 3.7.5, but
for the present purposes another definition, known to be equivalent
to it, will be more appropriate.

Dermnrrion 6.2.1. Ou a probability space {£2; &, I} a seguonce of
random variables x,=f,{w), each determined only a.e., iz said to
canverge in probability (in measure) to a random variable x=flw), iny

symbols x,-»x (probj,

if for each ¢> 0 we have - \
hmP|fﬂw)—f Y€)=, 1(1’],}
and a sequence {x,} iz a Couchy segueace (prob) if ¢ :
lim 2] ful@) —fulo} | > ) =030 (6.2.2)
h, Temde 0O

for each > (.

The following properties of limits in proh{hjﬁtv will bo taken as
known:

A

Luwma 6.2.1, 4 sequence is conver gent tawm s some Hmdt element if
(end only if it isa (”amhéwea%q%qlgpéﬁhgﬁgm{ is wnigque a.e. 4 limit
of limits of a set of random varigblek is aguin a limit of the set. If
£ Yy ond o, f are real, theh Ay + Py > 2t - fy.

TreoreM 6.2.1. Fora *m«udean stochastic process, if we are given
a seguence {w,} in O zhewﬁae‘corrwpondmg sequence of random veriables

\, &, = (w, &,) {6.2.3)
on {lis a C'n,ucfgg'ée'g-uence {prob) if and only if for the churacterisiic
Functional weﬁ{we Hm @@, —&,))=1 (6.2.4)

“\’ b, fh=ime0
Jor every {Ml o, and the imit (prob) of (6.2.3) is 2y = (1, @y} for @y in O
if and G’ﬁ»ly if lim (e{w, — o)) = 1. (6.2.5)

\ N

\ ‘Pmoj Iv will suffice to prove the first part of the theorem. If e(z) is

bounded continuous in (—o0,w0), then, as is eagily seen, for any
Cauchy sequence we have

fim fﬂc(fmw)—fﬂ(m))dP(w)=c(0),

i, &

and on putting w,=f.(0) and cfz) =272 we ghtain {6.2.4), Con-
versely if, for instance, in

[na]
] 5 mns
el -t arin
0 ___J‘ e~ FEIdniny gy
—m
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we put &= (0, ) — (2, 3,,) and integrate over Q we obtain

E{ermmuonly =J e YDy, — 5, )) dat,
—c

so that (8.2.4) imnplies lim E{o-mlonw) =1,

W, B—= o
But this i plies (6.2.2), as claimed,
TrEoR K 6.2.2, Let () be an everywhere dense part of o larger vector Q
space (0% (&%) on which there is given « topology in which «@f + 563 45
continnous in the four quantities shown, and let 0¥ be complete i Qbe

N\

sense that o sequwence () has a limit point if and only if we have >
1@as p A
S

m (&% —wk)=0 (in topology). O (B.2.6)
T, R0 ~

If a characteristic functional (@) on {) is continuoisiirthis topology,
then. there exists a distributive operation (w, 0%) Froue (% to the vector
space of random variables on L), which for % =fseduces fo the origingl
expression (w, ) and which is such that  (\N ’

f"}fb+a{;\\r&;ﬁﬁﬁ"gglﬁ%1'y_org_ill (6:2.7)

inaplics (0, B3) > (@Dy) (prob)- (6.28)

Proof. Every 5% is the lin ifof a sequence (&, }in (1, and by theorem
6.2.1 the corresponding séguence (6.2.3) has a Limit (prob). ,:5:15(.), by
& property stated in ]ema 6.2.1, this limit depends only on o itself
and not on the anpm‘:oxima.tmg sequence chosen, and thus ?1‘1&-37 be
denoted by (w0, *jThe properties claimed for the latter entity may
now be obtuinéd by full use of lemma 6.2.1.

We now 4kt an admissible family D={A} on a space T, a_ﬂd denote
by D¥ 2{&*} the smallest o-field of sets on T containing it %nd e
assumtedhat on D* there s given a Lebesgue measure »(A*) which for
{h"bsteiément-s of D is both finite and +0.

For p> 0, the measurable functions A(#) for which

up ‘
[(’. gh(mpdv;) if 1gp<®
v T

o) = 6.2.9)
[ it 2 0%
e
is finite are determined almost everywhere, and they const-it-u.te a
metric on

vestor space L, 2 Ly, Also, 8(h; — h,) has the properbics of Tl o
L, for which the vector operations are continuons and the spa
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complete (ﬂen for 0 < p =1, which is rarely so stated); and for O =1,
the space L, is a suitable extension (%, Hence the followi ing definition
and themem

Davrxitioy 6.2.2. We say that a random funetion X(A) is L, finde
if @¢(h) on Ly is continuous in the L -wetric.

Noto that if #(T) < oo (thus, for instance, if 7' iz a bounded interval),
then any function which is I -finite is also L -finite for p’ > p, )
TenoreM 6.2.3. If X(A) on I} is L -finite for some p=0 then, by
limits in probability, the mtegm? O\

J () dX (1) ,(@22.10}

can be extended from b in Ly to h in L , and the m’teﬂduf‘ mieqm:l 28
confinuous (prob) relative to the L, -memc

In particular, by putting hit) = wﬂ*{ ), X(A) ean be extmded to all sels

A* for which v{A*) < oo, and the extension is o- addzm e { prob).
If ¢{A) is of the form (D(f | A{} ]f’d'b:) x\ (6.2.11)

where ®(£) iz defined and continuons gn H< 5 < o, then it is obviously
L finite, and thercfore thetiHBrpHidisRey © 81"

P{h)= exp( f ]zdvf) (6.2.12)

$(h )i'exp\( f | A{t) jd@,) ) (6.2.13)

are both L,-finita. Bag of

N&Bih)=exp (~ f LR{t) |Pd-vt) , (6.2.14)

O i

we can On\"\a} that it is L o-finite even though it looks very similat
to (6.2.18) But (6.2.14} is » homogencous Lévy process (see definition
5.5. ngt as (6.2.12) is homogensons Ganssian; (6.2.13), however, iz
net\omogeneons, although it is subordinate to (6.2.12).
\Rema?‘k Tt is easily seen that every homogeneous syrametric
Gaussian X(A) must be of the form (6.2.12), if X(A) is ‘scalar’, But

if it is a veotor [XY{A), ..., X*(A)], then the general form of its charac-
teristic functional is

PR, . Ry =exp (—f ﬁ hp(t}h@(t}dvm(t)), (6.2,15)
v T /

»,g=1
where »,,(A] 18 a (noupositive) real additive function on [7 such that
2 AR ,(A) is positive semidefinite for each A,

T
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In general, for k=2, we can introduce complex quantities X(A),
A(f) as in remark of section 5.5. Now, if the sequeneo

f [y 2X (1) + BEAX" ()]
o T

is convergent (prob) for every sequence {A,, Ay} which is convergent in
Lp-metric, then so s a,]qo the sequence

AX () — B dX (), .

J AN

hence the following statement: O ’
TuporEM G.2.4. If a compler random funciion X(A as JEr g‘imfe,

then the integrals N N g.
' A AX () ~LY 6216
JF N/

ana’-J Ry dX 1) huve the completeness and closupe properties staded in
) ’\ &

T
theorem 6.2.3. O
Drrxizron 6.2.3. We will call a eomp"hzx random function X(A)
a Wiener process if ils charactezispio ﬁm@’ﬂ%ﬁy org.in

é{}’r)-—m{p (:—j' | A{t) [zdv) (6.2.17}

If written in real compoueht« » Wicner process is a (Gaussian vector
[XYA}, XA with {htxwteribtm functional

@(fli;:{a?')zcxP (_ [ (B2 + (h2)?) d-v), (6.2.18)

and this is 5 H”Qe}ml caso of (6.2,15) for k=2.
chcefo‘s(hfn.ll fumetions X (A} will be complex.

6.3. Gohvergence in norm
T for given p= 1 we consider on the given probability space only
}1\)56 random variables #= = f{w) for which the L,((2)-norm

1p
3.1
”f:(.[ llf(wﬂildp(w)) (63 )
o
I8 finite, then we can envisage convergence in norm, 1fx -f |;—>0’;1)
(6.3.2

Famrf )

and we note the followi ing statement w. hwh iy easily proven:

il
Lemus 6.3.1. If f,—>f(L,) then f,~[ (prob}; hut not ReCESIATHY
Conversefy,
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DermNrrios 6.3.1. We say that X(A) is L, -bounded if X(A) Is in
L (L)), meaning that .
Y:f R dX(t) {6.3.3)
T
is in L,(Q) for ke Ly, and if there is a constant M such that

f PRity[pde=<1
implies B Y |5 =M. {8.34%
Lemma 6.3.7 implies as follows: O\
Tamorsx 6.3.1, For any p=>0, if X{A)1s L, -bou-nded fm\ sone
p=1, 4t s also L -fintte.
If a process is of tho form (6.2.12) or (6.2.13) or (6.2 l‘c) then the

{one-dimensicnal) characteristic funetion of the rahc?om variable
(6.3.3) is of the form

exp (—aiL[h |2dv) , C3p (—- leg ;P(J ]k[g?i\?'yp) :

{ exp(-— |« |ﬂ, L if’ri-v)
»" T

o

respectively, and w 1th!*trhedeh‘tialdib€ﬂéé’18h5 5.3 we may staic as

follows: 2

~

THEOREM 6.3.2. 4 I-Va'-ener‘p-mcéss is Ly ,-bounded for every p= 1 and
is tn particwlar Ly p-bounded,

The process (6,213 etHich is subordinate to @ Wiener process, 15
Ly, j-bounded for pap: and the homogencous Lévy process (6.2.14) is
L, ybounded far @<p

Wo now staft dut not with a set function X(A) but with a {(random)
point fungtid 2(f) on T with values in L,(€), and we assume that
this vectéa“mlued funetion «(f) is {strengly) measurable in 2(A*) asin

section,}.3, and that for some o< 1 the integral
AN

£ ) lir

O li=llj= (L et |.;vdv) (6.3.5)
is finite, thns being a Banach norm itself. The number o need have
no relation to the number pin (6.3.1) and in fact the norm (6.3.5) could
be introduced for # in some Banach space B not necessarily an L,(Q),
and in order to emphasize this wo will denote the Banach space of
functions {#(t}} with norm (6.3.5) by L_(B) oven for a given p. We will
also consider the norm (6.3.5) for ¢ = oo defining it then by

'0

li; !l = essertial upper bound of | «(f) ||,
tel



AXALTSIS 017 HTOOCHASTIC PROCESSES 155

g0 that we ean introduce the quotiont

P .
= 6.3.6
Py (6.3.6)
forallpz 1, p=1 included.
By the theory of integration of vector-valued functions, if
tye L () and a(*)el,(B),

™

then the integral y= J h(t) x(t) du(t) (6.3, 7}
exiats (and i+ an element of B=L_{{1) again), and, in fact, by Holdqs
inequality woe lwive ~ up
sis( [ Ino |f) e S8
S ",

I particutar. At} = o, (t) ek, (;‘) #0 that the 1nbcgrd[

‘ (;)A({.) ;}!(3)dl}£ .’,IT if} (E'UEX(.)‘) (63'9}
Jr J

exists and isan element of L,(€2), dl’ld 45 adtitetion on D it is additive
and in fact o-udditive (L), Forhel, the mtegml (6.3.7) can now be

equated with the 111tegral (6.3.3) amﬂ?'&l SHE AT oRtbe iy statement:

THEOREM 6.3.3. 1f X(A) is an mdef inite integral (6.3.9), then i i
L, ,-bounded, m"

Thiz theorem does not, ha}e a converse; and we will sce that even
the Wiencr process, yv Hich is the most ‘bounded’ process known, is
Aol an indefinite mtwml if the variable ¢ is continuous.

Drenviriox 6387 We say that the measure () i8 Ly atomi?ﬁ:tﬁ{lf
foreverye> O\I;Qre isa d > Osuch that E v(A,,) S o Implies z‘b{ m) 26

for any sm}_\ﬁ- AL )
THEORb\i 6.3.4. If X(A) is @ Wiener process, then X(A) isthe mt;gml
{B:8.9) of a function x(t) with values in L) if and only i v(B) ¥
Adomistic.
Proof. For (6.3.3) we have
B Y[5=c| [P0

for a constant ¢ = (+, and hence

: a }

-~ : 2 'L(i&m_] | H
S (B X&) '=e |
norm if and only if

L

LA =
=1 ga=1l

80 that X(A) is ‘absclutely continuous’ in Lp{ €2}

U4} is Ly-atomistic, as claimed.

\.

N
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Ordinary measure ona <t < bisnot Ly-atomistic, and thas © ordinary’

Wiener process is not an indefinite mbegral of a function «() with .

values 2 in Ly(Q),
If we apply definition 6.1.1 to a complex Tunction X(A), then il is
& Ganssian process if its characteristic function is of the form

exp (¢ (h) —Qu(h)), (6.3.10)
where ¢ (k) is rcal distributive and @A) is non-negative Hermiti\;a.n
bi-distributive on the complex L. \)

TrzoREM 6.3.5. 4 Gaussian process X (A) is Ly y-bounded if dnd ondy
if @1k} and Qy(h) are both bounded for N
f I R(2) (2dn< 1, ALY 631
JT G

that is, if, and only if, on the compler L,(T1, .Q\(.,k) is o real Linear
functional and Qq(h) = (Ah, h) where Ahisa noei-gﬁegata’-ve bounded self-
adjoint operator, \
FProof. The characteristic function of (6:38) is
s (i Gy 5ol g i
and thus, except for a constant i}yﬁtér,
E{| Y,l}‘\r= Qa(h) + Hh (k)2

But this is bounded in§the it sphere (6.3.11) if, and only it, (%),
&y(h) are bounded sgparately, as claimed.

3

O
6.4. Expansjen.in series and integrals

We assug@éﬁfﬁat there exists on {D*; v(A%)} a complete orthonormal
system {\

N\ a8}, n=1,23,.., (6.4.1)
K—m};\ ' f _9nlt gaf)do=5,, . (6.4.2)
For any A(t) € L,(T) we can introduce the expansion

k(z)~§: Yuml®)y V= [ k() g,() do, (6.4.3)
and we have A{t)= lim i Yo fanlt) (L), (6.4.4)

=0l gne=]1
by the Riesz—Fischer theorem.

If for some p>1 the functions g.{t) belong to both I pand Ly,

N
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then the serics (6.4.3) can also be set up for heL,(7), and it then
frequently happens that there exists a matrix of real aumbers

{A-n.m}: m, n:']-, 2, 3, rey

in which for cach # only finitely many are £0 such that

A= lm X AV mdnll) (LpJ {6.4.5)

A= om—=1

N

For instance, lor ordinary periodie functions A{f) In —3<i<d, if )’

we pul' k= + _ N
Wiy~ Sy petmint, J e, (§46)
i <™

)
then, a3 we know, we have ‘&
’f""\"[_;' = litn \._.r (] *u) Yon ginimd (L.ﬂ)’ (647)

R—roG e N " P \J

(M
forh{f)e L, p= b and, in fact, b} a renowned tlm()rem of Marcol Riesz
we haye 2/

M= tim Y 7 exminied, ), (6.4.8)
monE V\;’\\!W d]jttaullbral y-orgin
not only for =2 but alxo for p>1, a,lfhough this is of no particular

tonsequence to s,
Now, if we substitute all tj\Mc expansions into our integral {6.3.3)

we obtain the following tl{&uﬁem
TrepoREM 6.4.1, i) 2R {m an L-finite X(8) we indroduce the (random-
vebued) Foyrier m{,ﬁ(m nts

‘.\*.\“' Y= [ gndt) AX (1) (649
o J
then, e hm}s "Z‘Xu! ~ 3 Yl (6.£.10)
i h —1

Kﬁhg Sense that ,J'm ke L, we have

| 411
ity dX () = lim g Ay¥on Yo {pTOD); (6.4.11)
JT p—ro m=1
S (6.412)
wd = lim 3 FuY. (prob)

n—rw w1

for e L,
W) In particular, if X(A) ¥ periodic on

VI LY J* _emimtg X(6)  (64:13)
7 dwim }-m = [
({A 2.4 ¥ me” "

_1<t<} then we have
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in the sense that

J” A dX@= lim ¥ (1—Lm-i)7.,n1fm (prob) {6.4.14)

—% D = —p 4 H
k3
Jorpzl, and =lim ¥ 7,7, (prob) (6.4.15)
TR =
for p=1,

(iii} 1If, more precisely, X(A)is L p,obounded, then the limils (6.4 110N\
(6.4.12), (6.4.14) and (6.4.15) ewist nol only in probability but alse p
L{O)-norm, . \:x..}

We are now viewing the sequence of random variables YWV, 1, a5
given by (6.4.9), as & random-valued function on the ‘diserete’ set
T ={m}, and we assign to each point m the measure I.ZI’he analogue
to the previous vector space Lig will bo denoted by Loy and it consists
of sequences y ={y,} in which only finitely many edbthponents are +0,
and the space L:,, which is meant to bo the afimiogue to L, is deter-

mined by the norm o 1;'p.”,\
IO
m=1 oX o

www_dbraulit‘f}‘m:y.m'g.in

TeeoRENM 64.2. (1) If (XA Ly-finite, then {Y,} is Lyfinile;
and conversely. Similarly fo:*:D_;’i,:bowadednes&

(i) If {X(A)} is Lm-ba'(%ded Gaussion, then {¥,} is Ly g-bounded
Gaussian; ond converselyf )

{fit) If {X(A)} is a\@?ener process, then {Y, } is a Wiener process;
and conversely. (Hoiveve:r, if @ non-Gaussian process {X(A) iy homo-
geneous, then { ¥, Yoneed not be homogeneous; nor conversely,)

Proof. If {XIA)} is L,-finite, and it with {Vwt tn L we form
.”\.‘~

for p= 1.

N O = Vngnlt), (6.416)
t-hgergw% obtain f h_(-ﬂjdX{t)zz?m_Ym, (6.4.17)
A\ T m

%
\cmd by Parseval’s equation we have

L]k(t) Fdv=3|v, |2 (6.4.18)

If now we take a sequence of elements {iin Ly, r=1,2,..., and if
we apply these formulas to the differencos Y ="V~ Ve and if we let
7,80, then we conclude that { Yo} is also Ly-finite.

Conversely, if{¥,)is L;-ﬁm'te, and if for he L, wo introduce the
expansion (8.4.3), then (6.4.12) implies (6.4.17}, and if we now take
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& sequence of cloments {h”} in Ly and apply this and (6,4.18) to the
differences /=" — A% 7, 5— 00, then {X(A)} turns out to be L,-finite.
Also, by the sawe reasoning, if either process is L, ,-bounded then so
is the other.

Next, it {X{A)} is Gaunssian, then its characteristic funetional

E’{exp (i j dea))} (6419)
g
has the form (6.3.10). But by (6.4.15), (6.4.19) is identical with O\
E!exp (g- 57, ym)}, (5.4.2\0)

which is the characteristic functional on {Y,,}, and on the qther hand
the substitution (6.4.15) also transforms {6.3.10) intoy’

exp ({¢'(y) - " (7)), O (6.4.21)

where again (/'(y) is rcal continuons on Ly an(\@t”}y) iz non-negative
bounded self-aljoint there, Thus {¥,,} is dlgh, Graussian. Finally, the
identity (6.4.18) shows that if either procoss 13 & Wiener process then
80 is the other, Www, d'bvaullbral "y.org.in

Remark. The above reasoning algody gives the following conclusion.
H{X(A)} is subordinate Lo an, L3y-bounded Gaussian proeess, thus
having » characteristic I"unct\énal of the form

DEQ, ()~ Qulh), (6.4.22)
with “hounded’ ¢, ( h)end Quh), then { ¥} is of the same kind and has
‘the same® chs udciw Jtic functlona.l and conversely.

Weare now fuening to Fourier integrals, and the following theorem,
although ll\ﬁibwnt for important applications, is a centerpiece of
the Ly-thaging™

TI{r{mﬁn 6.4.3. If X(A) is defined and Ly ,-bounded on

o) B (~m<t<w),
then there exists ¢ (unique) other process Y(A), likewise defined and
Ly, ybounded on Iy, such that we have

ro h{rydX (fr}=fm gis)d¥(s) (6.4.23)
for amy hlr), pls)e L.z(El) which are Plancherel transforms
hir) ’“Jﬂm et g(syds,  g(s) ~JW e hip)dr  (6.4.24)

—

of each oifer,
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In particular, by putting g(s) = o als), we have

"‘00 8—2ﬂ€rﬁ _ 8—2771'-?‘-1

YA, -_—Jw (fﬁe—zms-rds) dX(r)= » —— - dX(r)

and inversely (or ‘dually’), (64.25)

meh{'

Also, if either process is Gaussian or Wiener, then so is the other, and '.E.f\
the characteristic functional of X(A) has the SJorm (6.4,22), Uw\rI sthe
characleristic functional of Y{(A) arises by insertion of the firstwhietiral
(6.4.24) into if. A

Proof. If X(A) is Ly ,-bounded on #,, then A

¥,= J. " A S o

—

o 627::'.:,.'?_ ezm'm
— —d ¥(s). {6.4.26
e Dy (=) ' 7

oy
N

18 u bounded linear operation from Ly(F,) o030, and it is readily
seen that uny such operation can be so répresented by a function
X(A), and uniquely so. Now the P]a-n(;hérei trausformation (6.4.24)
is & unitary mapping of Ly(E,) into igelf, and such a mapping carries
& bounded linear opevationd firomd| Ribty) cobeg Iy Q) into another such
one, whenee the theorem. " 3

6.5, Stationarity and or\tﬁogonality

Joint assumption. I1y\fslgé present section every process oceurring is
L, s-bounded on it-spﬁﬁm space of existence.

DerINITION 68,4/ We say that X {A} on (—o00,00) is K-stationary
("X for Khi.pté]ﬁne), if for any two finite intervals A 8, <P S P
m=1,2, and Allits translates Abro, +t<r <8, +£ we have

A B KA = By XA (6.5.1)

Leywa 651, X(A) is K -stationary if and only if the bilinear

fuﬁc}ioml
Py = |

—

Eﬁﬁdxwyf

R, ke Ly, is commutative with translations,
PRYr+8), Bs+60)=PRMr), B¥s), 16.5.9)

—w<t<ac. Also, if X(A) happens 1o be the indefinite integral (6.3.9)

of an Ly-continuous function x(t) then X{A) is K-stationary if and only
if for the covariance function

Rz, ) = Bia(r) afs)}. (6.5.4)

h¥(s) ﬁ@}, (6.5.2)

— 3
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we have B(r+t,s+t)=R(r,s),
80 that we heve Rir,s)=R(r—s) (6.5.5)
for a {continuecu~) function R{f).

The proot ul the first part follows casily if we approximate to A,
A by step-function, and of the second part if we substitute the
integral (6.3.9) into condition (6.5.1),

We also note without discussion (becanse it will be of ne con-
sequence Lo us) that if o K-stationary X(A) is an integral {6.3.9) ofs

a function «(f) which is integrable in Ly(Q)-norm, then, after adju\éﬁ‘-“.\

ment on A f-zel ol neasure zero, (t) is continuous in Ly(Q)-norm/as

~
T

envisaged in the sceond half of lemma 6.5.1. ™
Derrximiox 6.5.2. We eall Y(A) on (—oo, a0) oﬁiz-ogqg@ﬁf we have
B{Y(A). VA =0 \ Y (658)
for any two intervals which are dizjoint, A; A A&}%})ﬁ
We call it orthonormal if, furthermore, NN
B ()5 =c| A ©5.7)
where (A)= 4 —x is the length‘tﬁf\’iﬁhé{!ﬁﬁrﬁhl;wdocg.miﬂ constant.

Remark 1. Requirements (6. 5.61’}1ﬂd (6.5.7) can be contraeted into

BLY(8,), FAa=e|Apn by, (605
Also, Y(A) is ortlmnomwfh’ and only if it is both orthogonal and
K-stationary, B\

TeEomI, 6.5.1 KX (A) and Y(A) are transforms c.zs " theorer'n.
6.4.3, then eithe™n"them is K-stationary if and only if the other is
orthogonal, (7% il

In part ?'QQ! «f, thercfore, if either of them is orthonormal then 86 18 also
the other h

Rgaiov]: 2. Note that ‘symmetry’, Caussian character and ort t;
{b;ﬁ‘}‘mljt}" are cach ‘invariant’ under Fourier transformation, an
a Wiener proecss is all three at the same time. A=

P-roof - Assume first that Y(A) is orthogonal. For 81087

th ave (! ’
en hgve B YA +Ay) P}___E{l YIA,) fB}_]_E{] Y(Azﬂ i

and thus if we introduce 6.5.9

TA) = EB{ Y(A) | (6.8)
,t'hen thisis a non-negative additive interval function Whlcfh ,h; Wi;:_’
3 defined for finite intorvals only. Tt is important to note Jor PP

. sgump-
tong in pther contexts that thus far we have only used the abs:i ’
B

{, we

II

Q"
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tions that each Y(A) is anelement of L,{Q), and that the orthogonality
property (6.3.6) is available. However, from full L, s-boundedness
we deduce
I‘(A):E{
and by Lebesgue theory thero exists now a bounded measurable
function y(a),

f " AT ;2} <M Jﬁm loa(r) [2dr=M .| A,

— —uz

02 ey = M, (6.5.185<
such that T(A, )= f yie) da. ((5.\5’.\}1\,
We now introduce the bilinear functional N

=)

Q) gl >)=E{ J

. o0

F AT (). J 92(8)4?1&)‘}', (6.5.12)

—od —

g gt € Ly, and if gt and ¢* are both step functiox Son the same snm ¢
Intervals A, +... +A,, and il gI* are the valueslofg™(r) on Ay m=1,
J=1,....1; then (6.5.12) has the value A\

E _ < A N ;
13T AN
WA %%%Fb&‘sﬂly_org_ in
i= A ::.
Now, this expression is nothing‘b'ti't the integral

f m{f () g%(oc) yier) dex, (6.5.13)

e
and hy Lz’z-boundedpés\ we obtain that this is the value of (6.5.12}
for ¢l.g% in genoral\Krom thiz we conclude that {6.3.12) haz the
invariance propgrﬁr
G 0).4°(5) = Qg nim, g2y ereory (6.5.14)
for all ¢;zand’if we introduce the Planchercl transforms {6.4.22) for
both fufwtions g, ¢, then (6.5.14) goes over into tho relation (6.5.3),
mﬁan}ng that X{A) is K-stationary as claimed.
\Cbnversc] ¥, assume that X(A)is K-stationary. Since, for ht=A%=5,
P(f. ) is teal and ‘bounded’, it follows from Hilbert space theory that
there exists a bounded self-adjoint operator 8k such that
P(hY, 12) = (B2, SH1), (6.5.15)
where the expression on the right is an ‘inner product’. If we denote
by U%% the operation which carries h{*) into A(+ 41), then the
stationarity assumption (6.5.3) can be stated as

(A2, SAY) = (T the, ST,
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but the right <ide = also (42, (% ST, so that we have
&= {* g

Thus, & is conmaatative with translations, and sinee S is bounded,
our lernma 441 Swecomes applicable, Therefore, if we denote the
Blancherel translorins of gty g by &L, B2, then P(A', 2%) has the value
[6.5.13}, wher yix: i< bounded measurable function associsble with
the operator N, However, Qgh, g2t =P(AY, A%, and thus @{g,¢?) is

expregsible as o intearal (6.5.13), and if we pot gn(a)=w, (@), N

m=1,2, then i65.5.13) Ly the value 0 for Ay n A;=0, which prowg’gg
(6.5.6}, as clainicd, .»3;

Our Jemnia 4.465.1 has an analogue, more or less, in every.giﬁua-tion
in which & Plincherel duality theorem is available, an§‘t-heorem
6.5.1 has then alse an analogue of some kind, in ‘nonpbommutative’
cages a3 well. The following statement which willg@t.‘be further dis-
cussed iz typical of them all: \ “

3

TuroreM 6.5.2. /] { X (A} is periodic on £} Ct< i, and if

a3

Y =

m

vghg;ff;{@éi?m&jbrary_org_in (6.5.16)
b Y

isthe ‘dual’ piocess, then X (A) i',gﬁszgﬁonwry according to (the ierally the
same) definition 6.5.1. if and {N&‘ Jif (Y} is orthogonal it the sense thel

E}\?‘m?ﬂ} ={), mFn;

el X{A) is fjr‘{}:c)ggi{f{}?"E;c(‘.-m'd?'ﬂ,g to {the literally the same
8.5.2 1f and o {y, {{{.}'m} is stalionary in the sense that
& S
AN\ Rin,ny=E{T, Y.}
Wa f ’H-Taqﬁ;:})a of n—m only, Rim,n)=R{m—n).
] 4{{%}{“.’@}} is orthonormal according to defi
YN a} is orthonormad in the familiar sense that

) definition

nition 6.5.2 if and only

B{Y,, Y} =S
('usually with e 1),

0.6, Further statements

. el d
Fheorem 6 5 1 5 et - mili osition due t0 K hintchine an
em 8.5, 1 is not the familiar propost b umdedness or feature

Ot}le{“s, The latter does not introduce Ly . o introduces
d_ual]t.}.r 80 prominently, but, in an indirect fashion 1'323ab011t'
Ll,-z'bOImt’k‘.dn(‘SS, and it is crucially based on our theorer . ‘u_z

N

N\
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positive-definite functions which it applies by wav of 1lie following
proposition:

TusorsM 6.6.1. If a rendom point function (1) is continuous in
Ly{2)-norm, and if we have

Elx(rya(s)y = R{r— ), (6.6.1)
e
then wa canput  R(r—s)— ' 705 I (), (6.6.2),
where Idy=0, TE)=R(0) <o, LE673)
Forany (), ¥+ )e Ly (Ey) we can form the bi—distr-s’b-u.ta'-r-rj,',r‘{@r_‘.r.‘--e'r:-na.l
e o _ . z":‘
P, k2)EE{ f R7) 2(r) f A2(s) g;(s.yfzfg} 3 (5.6.4)
e Jow i
~ J ' J M) B2(s) B{r — s{elns, (6.6.5)
— 3 —o0 x'\\’;
and if we introduce the transforms @
o 3
g™ () ZJ amAmita ﬁ-”‘[t)ﬁtg;v,‘ m=1,2, (6.6.6)
B ’:}, ‘
then we have  P(}3, BELY crbri"ﬁbf‘g?@)oé- ;ﬂﬂ"(g), {6.6.7)
S

Proof. 1ut) * = Ba(t) @: £{0) tmplics in particular that ilaie) |
is bounded, and since x(ti*i%ﬁ-lso continuous in norm, we can consider

the integral ’\\"' ,«m
N\ Jw

() x(6) dt (6.6.8)

4

for any A(+) € L)E), and it is even possible to define the integral

O" Y (6:6.9)
'\\w f_ . (€} dH(t)
a5 a B{b;}umn integral for any f(+)e F{E}). We can also form (6.6.4)
ar{dﬁ'fn ce for he L, we have

Y 0520,0)= (" [ mts Ry v,

we can indesd upply our theorem 3.2.3 and a representation (6.6.2)
with (6.6.3) oxists indeed. Also we can substitute (6.6.2) in ( 6.6.5) and
{6.6.7) ensues, as claimed,

Next, ( 6.6.8) is a distribut ive functional from Ly to L,(¢0), and if we
introduce the transforms

gla) = f ) h{t)e-tmitx gy (6.6.10)

-
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we muy #1350 view 1t as a distributive functional from the vector space
{g(* 13 to L,{82). Now, formally such a functional can be represented

=+

a3 un integral | (o) d ¥ {ez) with ¥(A) € Ly((Q), so that we have

—

|m MOl d— f T d@dT (@), (6.6.11)

and if we denote the transforms of A1, A% by g%, ¢%, then (6.6.4) is
forwally o @ . N :’\.:.\
out )=l [~ JEare. |~ ewarn), @i
. —w %
just as i section 6-5. But formally this implies the grthogonality
. N
relation £ Y(Al}m} AT(A, A Ay, o ,\ (6.6.13)
and the fact is that all this can bo made rigoroug.@d that the following
continuation to the preceding theorem can bg stated:
TunoreM 6.6.2. Also, there exisis, on all’ Evtinded indervals, @ finitely
additive function Y(A)e Ly(Q2) for whieh(6.6.13) and (6.6.11) ?a,r:ﬂds. '
Conversely, if we are given'd YiAEROH WTAY Yo giich (6.6.13) with
(6.6.3) holds then there exists aﬁ{-@éﬁﬁéﬂ x(t) as in theorem 6.6.1 for which
{6.6.11) holds. N
We will not reprodu ce{t@e proof. Lone:
Eemark1, Rel a-tion(Q\tﬁi’l 1) ean hoenlarged to themore gelf-dualone:

\Jm alt)dH{) = f  dY (), (6.6.14)

—en —

where H(+ }gi\}i‘ ), and g(e) is its transform. _
Beinapl 27T a ol*-additivo T{ A4} is finite on bounded sets, and if t‘-h‘erc
is & ¥ (A)with property (6.6.13), and if we introduce the decomposition

~O T(A)=Ty(4)+ To(d) +Ts(4)

h
/ . i saddends
Eto discrete, singular-continuous and absolutely continuous a '

: ; Yo (4
then Y(A) cau be written as Yy{8)+ Fp(A)+ Yy(a), “vl.lemf ?r}{m)l
satisfies (6.6.13) for 1',, m=1,2,3. Hence the following Turthc

slatement:

Turorny 6.6.3. Finally, wecan puluniquelyait) =)+ )+ s 'Ef)‘;
whereeach s, ({) is K-stationaryand has atransform Y {f)asinremarics
of section 6.6,

Any o-additive ['(d)Z 0 with

Py <20 (6.6.15)
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can be the covariance function of a function F(A), compare theorem
6.1.2, and thus, except for the restriction (6.6.15), our present theoren
ts much more comprehensive than was theorem 8.5.1 in which I'(A)
had to be absolutely continuous always. This being so, we will further
note that even the restriction (6.6.13) can be removed, and that theps
i$ a proposition available, which can be statod in several versiong, of
which both of onr previous thearewms are spocial cases, N\

TEnorsm 6.6.4. If {w5(0)} in O<e<on is g Jamily of staligngry
random. point functions as in theorems (6.6.1)-(8.6.3), and ifslon tny
>0, 9 >0we have

| T ‘h}‘:
atE(t) = — — =712 | e £ 3616
() J_m Nh}exp[ S T)]x (T)d\f{. (6.6.16)

N

then there exists a representation

ot ,:\\’:
25ty ~ [ €2 gmon iy e (6.6.17)
o S
by a joint orthogonal Junction ¥ (A), ;'s:bga}'iiﬂ,g that if we introduce the
representations www.dbygulibiey org.in
x”(t)n»J Wi d Y e(r) (6.6.18}
-]

of thearem 6.6.2 then we hawval
N £ ]
{{(%@J = f ; e~ V(7). {6.6.19)
Lroof. It wo wpply (B6.11) with w(r)=aepr), F(A)= ¥4A) and
1 S "4

hir) = —?—? expxx:vg {t— ?-)2] then we obtain

Q“l T . il .
8 T eED | = (t—-#)R L) dy = 32””7‘?””2({.}’8(7},
N i o

P
be Sinco by explicit assumption the left side iz

ol

f¢;¢e(t}~f g2milr dyig+e(.r}’

——0

. 5
we therefore obtuin Fute(A y= [ e I Yeir)

w2

for any >0, ¢> 0. From this it is possible to conelude that we have

5 5
[‘ e”{"f:‘eJ’de’?“{'r): f e T Fe(r),

W o
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for ali 9 > 0, ¢ (}, and this means that the integral
g
Y(A}:f emeT g Yé(7)
1

iz mdependent of €, so that (6.6.19) holds, which proves the theorem.
Now, il we take a function x(f) to which theorems {6.6.1)-{6.6.3)
apply, and if we form

m%t):jm %ﬁoxp Ii—;—r(t—*r)g:l a{ridr, O\

then {his is & family to which theorem 6.6.4 applies, with Ygﬁs}.t)eing
the same as in theorem 6,6.2. Also (t) is a limit in narmyof z<(f)
as ¢ 0. '\'{,“

On the other hand, if wo take a sot function X{@)as in theorem

6.5.1 and put @ ] 7T \
x5 (t) =f —r exp [—- - {2 —le}}X{T):
— o \.'6‘ € H\ v

then this iz also a family to which t-hegreim’z 6.6.4 applies with Y{A)
being the same as in theorem 6.5.1. Jurthermore, it is casy to show
from Ly ;-boundedness that’™™ dpratlibrary orgin

RN
Xe(Aygl= [ xe(f) dt

..\ . )
convergesin norm fo X (.@;};} asé J 0, and this theorem 6.6.4 does indeed

inelude both previpusones, in a sense. _
Note that the fumetion () is a random-valued solution of the

equalion 2N/ B2e(t) 48x€(t)
> aw - de

A&
and tha't}afe' could have also taken tho
n u-‘la,ic}} case we would have had

‘harmonic’ equation instead,

N

‘\M\:\' ’ xe(t)wa ganitr=2em17I 4 ¥ (7),
} —

bt we will not pursue this topie any {urther.
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NOTES AND REFERENCES

CHAvTRR 1

1.1. General approximation theorems are also 1o be found in It W. Hobson,
Theory of Functions of @ Real Variabls, vol. 2 (Cambridge University Prags,
1947, ~\
1.2, Translation fimetions, aftap having baen mentioned ineideniully T3
. Bohr, were introdmced syatematically in the second half of our Dafag,
‘Beiivige zur Theorie dor fust poviodischen Funktionen. 1°, Math. 4 nr. Lol 96
{1926}, pp. 119-47, ®

For Stepanoff fimetions sec, for instance, A. 9. Resf covileh, Alm gt Fieriodie
Functions (Cambridge Universi ty Press, 19323, RO

1.3. The Hilder-Minkowski Inequality here used is for:m{lh. (G.13.% on
p. 148 in G. H, Hardy, J. E. Littlewood and J. Pélya, Inequadities (Cambiid e
University Press, 1934), \/

1.4, The Lebesgue integral of Banacli-valued funeridn® was introduced in
our paper, ‘Intcgration von Funktionen, deren Werte dic Tlemoente cines
Vektorraumes sind 'y Fund. Math. vol. 2( {1933), ApS262_76. Seo also T H.
Hildebrandt, ‘Integration in absiract spaces’, Bub Amer Muth. Soe. vol, 39
(1953), pp. 11139, and Pp. 40-52 in B, Hilie,Punctional dAnalpais and Semi-
grouwps {Amer. Math. Boe,, Trovidenes, BRIy 1948}, Tor additional Fourtar
analylic applications of 1'-I1W%ga%llmﬁﬁrﬁ§ghnrgﬁ'mi A . Taylor, *Lincar
funetionals on certain gpaces of abstugetly valucd Fnetions®, Axn. Math.
vol. 30 (1938), Bp. 262-.56, and R. Ti.’B,o;ls and 8, Bochnev, *On a thaorem of
M. Riesr for Fourier sevies®, J. Lopd “Maih, Soc. val. 14 (193Y), pp. 82 73.

1.5, For additive set funcyded in Fodidean space see T2 T, MceShane
Tntegration (Princeton Univm‘@i‘t.&- Press, 1944); 7. Radon, ‘ Theorie und Anwen-
dungen der ahsolul addit‘\-'égwMengen funktionen’, S8, Akad. Wian, Wien,
val. 122 (1813, pp. 1243-489; Hans Hahn, Beelle Funktionen, I (Springer,
Berlin, 1821y, anq g, Bgchner, ‘Monotone F unktionen, Stielt jessche Inteprale
und harmonische AJ}QJ}-‘%E’, Math, Ann, vol. 10 {1833}, pp. 475410,

Theorem 1.5.4 il to A, Plessner, *Eine Kennz.(:fclmung der {utalstetigen
Funlktionen®, J‘J?Ei;w Angews. Math. vol. 160) (1828}, pp. 26 -32. The extension
lo Iaar muadade"on COMPActk groups was given in our paper, ‘Additive set
Tuncliong Q;‘ngbups’, Arn. Math. vol. 40 (1439}, pp. 76996 (theorem 15 on
poTER) N

,\1 “\' CuirTeEn 2
\2\2‘. When a cotrse of leckures on this lopic was being given in the SPring
of 1953 at the Statistical Laboratory of the University of California, Berkeley,
a remark made by Dr . Paysen led to theorem 2.2 2 becoming us peneral as it
i8 now, and a remark made by Dr . Flanders led to theorem 4.1.3 becoming
as general as it is now.

For a disenssion and proof of theorem 2.2 4 gee 8. Bochner and K. Chandra-
sekhavon, Fourier Transforms (TPrinceton University Dreuss, 1049: Anp, Math.
Stuedies, no, 19).

2.4. There ave possibiliting of extending the Toisson summation formula
from sums over sirict lattices o RUINs over move general point sets. For one
variable some such statements were made in our paper, ‘A generalization of
Poisson’s summation formula’, Duke Math. T, vol. § (1940), pp. 220-34, and



NOTES AND RETERENCES 169

for several variables the problem was mentionad in ‘On spherical partinl sums
of rurltiple Wourter series”, Rev. Clene., Lima (1948), pp. 85-104.

Formulas for Fourier inlegrals used in the text will be found in V. oriesungen
iher Fouriersche Integrale {Chelsea, New York, 1948).

2.5. Yor ‘spherieal summability” see our paper, ‘Summation of multiple
Fourier serics by spherical means®, Traons. dmer. Math, Soc. vol. 40 {18386),
pre 153 207 and also chapter v in the book by K. Chandraselharan and
8. Minakshisundaram, Typicel Means (Oxford University Press, 1952; Tate
Lnstitute of Fundamental Research, Monographs on Mathematics and Physics),

‘The diffusion equation with general completely monotone transformationg.of
the Laplacean which we will yet discuss in section 4.6, cspecially with fractidnal
pawers of the Laplacean and the link to symmetric stable processes, gl \alsh
i subordination of Markoff processes which wo will discuss in seeiivn 4.4,
wiere introduced in our papers, ‘Quasi-analytic functions, LaplsedSgporator,
posibive kernels’, Ann. Math. vol. 51 {1930}, pp. 68-91 [this Hapsr containg
details and applications that will nol be mentioned in the texf, #hd *Diffusion
viuation and stochastic processes’, Pran, Nat. dead. Soi Wash., vol. 35 (1049),
g 368-70, The goneral transformations of the LapluceagNDy themselves wers
atrewly introduced in ‘ Cormnpletely monotona functiops%»ﬁ the Laplace oparator
for torus and spheve’, Duke Math. 7, vol. 3 (1857) pp. 488-502.

The case of fractional powers of the Laplacedd i "—oo <« <o was linked to
Ricmann-Liouville integrals i W, Feller, OnVa generalization of Marcel
Riesa’s potentials and the semi-groups gengreted by them’, Comm. Sém. Math.
Unfe, Lund, Tome supplémentajre L1 fs'aﬁﬂ’iilﬂgaﬁ}_or in

2.6-2.8. These scotions repl‘oduce,%ggfth additions, t'h% major part but not
all of the contents of the following, twio papers of oars: ‘Theta relations with
spherical harmonics’, Proc. Naf.dedtl. Sci., Wash., vol. 37 (1051}, pp. 804-8;
‘Zeta functions and Green’s fifebions for linear partial differential operators
of clliptic type with constant Gesfficients’, Ann. Math, vol. 57 (1933}, pp. 32-56.

A\

N\

" (HAPTER 3
A
3.1-3.4. The&é"écct-ions arc an elaboration 0, ‘Clo : :
ariginating inshe theory of probability’, Proe. Not. dcud. St Wiesh., val. 39
{1933}, p {(&8'2—8. _ )
Tn —gh<r <o, the famed struetnre theorom 3.4.2 wag concelved, with an

impexfEetion, in A. Kolmogoroff, * Sulla forme gencrale di un procosso slocasticn

Q@Ugﬁneo’, RO, Accad. Lincei, vol. 15 (6}, 1932, pp. 805--8,’866:9‘. T}]we:
imperfection was soon remeved by Paul Lévy, and the theorem was v a.r1_<?11115b3.
Ebproven, and a gysternatic analysis of this {onc-d1mcus10nr‘1.l) F.he_orem will be
found in M, Loé&"n, ‘(O sets of probability laws and their '1].‘1'1’_‘llf- elcn?enl? .
TTniv. California Publ. Statist. vol. 1, no. 5 (1952), pp- 53---88."11}13 paper is a.{;ic:,
in a sense, concerned with the peculiar relationship of this theorem to the
central limit theorem, and on this some brief cominent had f.lTll'eﬁ,d}-" been mad.es
in W, Feller, “I'he fundamental limit tleorcms in probability’, Bull, Amer.
Math, Soc. vol, 51 (1845), pp. 800-32.
The structure theorem 3.4.2 for several space ks p in |
Thiorie de Paddition des variables aléatotres (Gautheir-Villars, Paris,

of our note, “Closure classces

variables was set up in . Lévy,
1937),

pp- 212-20, ] varinhies per,
3.5, For an extension of the thoorems to scveral varighles see ;L;Eé?aécg_,

*Stochastic processes with {inite and nonfinite variancs’, Froe. Nal,
Wash., vol, 39 (1953}, pp. 190-7.

Q"
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For functions of slow growth seo J. Karamata, *Sur m mode de CrolEsance
regutidre des fonctions’, 34 athemation, Chyg, val, 4 (L4930}, pp. 3%-33.

3.8, Bee 5. Bochner, ‘Completely monotone functions in partially ordored
spaces’, Duke Muth. J, vol, 9 (1942), pp. 518-26; 5. Dochner and Ky Ifan,
*Digtributive ordor proserving operations in partially ordeved vector spaves’,
Ann., Math. vol. 48 (1047), pp. 168-9. und the last chapler of the o, Math,
Studies by B. T, McShane, Order Preserving Maps and ntegroation Processes
{Princeton University Pross, 1852},

For the result of H. Cramér see his paper “On the theory of staticmafn
random processes’, Ann, Math. vol. 41 (1040}, pp. 215 -30.

N
(\N
CHAPTER 4 C N

4.1. Onc half of theoram 4.1.2 wag given in our paper ‘:‘:‘ﬂ%ip[t: Taws af
probability and completely monotone functions®, Dube 3 uthealNwal. 3 (1937),
BP. 726 8, and we used it in effect to show that the symdmeiric stabie dis
tributions are subordinete to the Ganssian in the sond_ Of section 4.3, The
second half of theorom 4.1.2 was then stuted, for andther purpose, in 1. 7.
Schoenberg, * Metric spaces and completely monot.r;;%\f,‘mmtions", Ann, Math.
vol. 39 (1938), pp. 81141, K2

4.2. Theorem 4.2.2 waaobtained in s Princetqn&bcbonﬂ. thesis by W, (dilbart,
1932, P \d

4.4. The notion of continuity as i nl-mdu{:e& n definilion 4.4.2 js perha peill
named because it is quite different fro 1 ifene nteoduced fn AL KolmogorolT,
“Uber die analytischen E\’Fﬁfﬁb’d@}?rfﬁ‘{ _é%‘,ﬁ%ﬁza{f%ﬁﬁé}&{t’.hl;tr-itm‘echnu_ug Y, A nth,
Ann. vol, 104 {1981), pp. 415-38, aué‘l'”ln W. Feller, “Zur theovie der slochasti-
schen Trozewse’, Math, Ann. vol. I'na (1936), pre. 113-60. This latter eontinaity
moans more or less that aimost, g paths aro continuous, and this in turm nisans
more or less that in the assogiatetl ditfusion equation the operator in the space
vatiables 13 a partial differbnial operator of sceond order and in (e case of
8 atationury process gvel *genuine” Luplacesn.

We might mentiongdhat an imporient problem on diffusion was studied for
fractional powoers of 3 Luplacean in M, Kae, ‘On some connectlions between
probability theopp arfd differential and integral equations’, Proceedings of the
Second fn’e-rfcefey\gympo&mm o Mathemation] Statistics and Probosiity (Uni-
versity of Californis, Press, 1957, Pp. 189-215.)

To thefgqm 4.4.4 compare T, T, Schurznbm'g, “Metric spaces and positive
definite furtclions, Trans, Amer, Math. Soe. vol. 41 {1838), pp. 522-36.

45880 R EL A, (1 Puley, “ A proof of u theorem on averuges’, Proe. Lond.
Mafhy Sov. (2}, val. 31 (1930), pp. 289- 300,

4.8 and 4.9, Thee: SCCLIUNG surmmarize purt of the results fram the following
Fepers of oars: ‘Sorme properties of modular relations’, Ann, Math. vol. 53
(1931}, pp. 332-63, ‘Connection between functional cquations and modular
relations, and functions of exponential type’, J. Fadien Math. Soc. vol, 168
(1952}, pp. 89-102; *Bessel funetions and modulsr relations of higher type and
hyperbolic diflerentind equations’, Clomm. Sém. A7 ath., Tiniv. Lund, Tome
supplémentaire (1052, pp. 12-20.

CHaYTuR 3

The content of thiz and the next chapter is meant either to supplant or
elu.boratbt most, though net all, of the mesults in the following interlocking
Papers of ours: ‘Siochastie processes’, dnn. Math, vol. 48 (1947}, pp. 1014-61;
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‘Partial ardering in the theory of stochustic processes’, Pros. Naf, Acad. Sei.,
Weesh., vol. 36 (1950), pp. 439-43; *Length of random paths in general homo-
gencons spaces’, Anwn, Math. vol. 57 (1953), pp. 309—13; *Fourier transforms
ol lime serios’, Proc. Nt Acad. Sci., Wash., vol. 38 (1933), pp. 302-7,

5.1. Vor directed sets and inverse mapping systems ses, for instance,
B, Lefschets, Algebraic Topology (Amer. Math, Soe., Providence, R.J., 15427,
pp- 31-3 and other pertinent passages.

In vonnection with theorem 4.1.2, the anthor is indehted for cnlightening
advice to Dr Lncien Le(am and also to Dr L. Breiman. N\

5.4, The churacteristic functional was systematically introduced in Sk
‘Stochustic Processes’ Ann. Math. vol. 48 {1947), pp. 1014-61, for raidom
additive set fonctions, and it was also introduced for noint funefiors’ in
L. TeCam, ‘Un instrument ¢’étude dos fonctions aléatoires: la féngtionelle
carnctéristique’, O.R. Aewd, Sei., Puris, vol. 224 (1947, pp, .‘]”"1‘0—11. For
applications see 1. G. Kendall, *Stochastic processes and popalation growth®,
J R Stagist. Soe. B, vol, 11 (1948), pp. 230-65; M. 8. Bartlettahd’). (. Iendall,
‘On the use of the characteristic functional in the analygd®Of some stochastic
process acearring n physies and biology®, Proc. Camb. Bkl Sec, vol. 47 (1951},
pp. B5-80; and also 3. 8. Bartlett, “Uhe dual recurrdmee rolation for multi.
plicative procosses®, Proe, Camb. Phil. Sve. vol. #8L951), pp. 821-5.

5.5. Dealing virtually exclusively wilh randdm Ffunctions on the ordinary
straight line, J, L. Trooh, both in his paplessand in his treatise, Stochastic
Proeesses (Wiley, New York, 1045), prefers towgpeak of a *provess of inerements’
ruther than of random intem*&{;{{mqﬂl;p%ﬁ.[ibrary_org_in

B.b. Bee G, . Bates and Jerzy Ndymiar, ‘Contribiitionz to the theory of
aceident pronecmess. IT. True or alee contagion’, Tiniv. California Publ,
Statist, vol. 1 (1052), pp. 255-T6n partivular formula: (56) and neighboring
ones. This paper was enlightefiing to us for the emphasis it places on the fact
that [n population end fissipd\problems the rundom entity isnet a point funutit_?n
but & finitely additive interyal function only, and that care must be mlmn_ in
distinguishing which nﬁg\point. of the intervel does bolong to it and which
does not. 8

Y CoaPTER 6

6.1. For fahddm-point functions on arbitrary point sat, theorems 6.1.3 anid
6.1.2 werd Présented in the memoir of M. Loéve, ‘Fonetions _a.lcutmres du
second Q%*lé‘r’, which wus published on pp. 299-352 as a 'Note’ 1o thcﬁhook
by K, ]:évy, Drocessus Siochastiques et Mouvement Brownden {Guuthier-Villars,
Patisy 1949}, ‘ o

s\ N\Theorem 6.1.2, ugain for peint functions only and h\&'ith further restriction

\n\f ‘gseparability’, was also implicitly proven byl Hilbert spacc theory on

. 368-71 of N. Aronszajn, ‘Theory of reprodueing kernels’, Trans. diner.
Math. See. val, 68 (1950}, pp. 337404, ] .

6.2. What we now call L-finitencss was in our ‘Stochastic Processes’, Ange.
Math. vol 48 (1947}, pp, 101461, called L-stability. N

6.2--6.5, The speetral theory of astationary process was begunin A, Kinichine,
‘Korrclationstheorie der stationaven stochastischen szc.f?*se" , Math, Ann.
vol, 190 {1934}, pp- 604 15, and a rounded version o'f Kiul-ql}lne 3 t-heorc’m wa‘s
given in H. Cremnér, ' On harmonic analysis i certain [‘uncmonal‘spaeeﬂ . j-lrf-“
Mat. Astr. Fys, vol. 288, no, 12 (1942}, 17 pp., but in the mcEmt.J.mc H;‘\_\-‘nll[ﬂ,
in A Study in the Analysis of Statlonary Time Jeries {Almguist u.nq “ ikse }s,
Uppsnla, 1928), had taken the first systematic stq?s towards mtilizing the
spectral resolution [or purposes of ‘prediction theory '
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Aftor 1945 the spectral theory was reexamined in suveral studies, virtually
simultancously and Independently of ene another. Lotve introdoesd, amon o
othors, the (nonslationary) *harmonizablo® process, K, Karvlimuen in *[Ther
iineare Methodon in der Wabrscheinlichkeitsrae bnang ', Ann. e, Sed. Fenm, A,
vol. 87 {I1947), T¥pp., very much exploited the Hilhert & pase approach.
J. L. Doob in his article, ' Time series und havmomic anal Rk eilings of
the Berkeley Symposium in M athematicul Slutisficn and Prouisy ity (Tuiversity
of Californis Press, 1949, pp. 303-43}, stressed the Viewpoint of Norber, Wicney
and fnally in our *Stochastic processes” Anan, Meath, vol, 48 {1047), poo 11
the first atierapt was made (still abartively there) towards dualizin zthe th%-r?ﬁ-‘
by envisaging interval [unctions on both sides of the inversion formlyN
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GENERAL INDEX

Ahsolitelr continuous additive sct
funetion, 13

Abwolute value of additive set fune-
ticn, 12

Additive set function, 12: ahbsolute
value of, 12; absolutely continuous,
13; periodie, 18

Adjusted Zets kernel [def, 2.8.1] 44

Admiszible family (of subsets) D, 137

Bernoull eonvergenes, 15
Bernoulli addend (e}, 67

Characteristic funerion (Fourier trans-
form of a digtribution function), 26;
of a sct wylr), B: of a seb wafl),
139

Characteristic Tunctional [def J 4, Ji!ibr%

137

(Mosed oetunt 17, 835

Completely monotone function [t-hep'
rem 4.1,1], §3; in scveral vatiables,

89 ’M\
Completely monotone guapping [def.
+.1.1], 83; in scvé@ variables

[def. 4.2.91, 89 ()
Cono [def. 4.2 l] B3% proper, 88
Consizbent mapping, 77
(Jontlnuoub"i\h.lkuff {chain] density,
a7 \w
(‘om'frrgenw Bernoulli, 15; P-, §5;
,probabﬂlfy {in measure), 78,
w\ 130; weak, 16
Gonvergence factor [dof. 2,117, 23,
23; [dof. 2.8.2], 44
Convolution, 15
Covarianee kernel, 146

Density, see Markoll (chain) density

Diffusion equation [formula (2.5.14}1,
36; [formula {4.6.11]], 103

Directod set [def. 3.1.1], 118

Distribution function of k-functions
{or k random variables), 77

Euelidean stochastie family, 136
Huclidean stochustic process, 136
Gaunssian, Poisson, symmetric, 145
Expected value, 78
A\
Fejerkernel : non-periodie, 3; perlodlc,
20 oA\
Linite (Lebesgue) measure gplec, 76
Forward projective limity 134
Fourier transforms -p (Gx )“and Bolay),
23
Fully homogenemﬁsilarkoff {chain)
density, 98

p §

Caussian ‘aﬁ?}gnd ¥, 67
Gayagitmeernel, 4
Gaus’sia-ﬁ Jaw, 93
s -DPoisson process, 145
skt %ﬁllﬂ'
”(;enerafarl measure, 70
Generating ficnctional, 143

Harmanic, see Spherieal harmoenic

Heat equation {formula (2.5.11Y], 35

1li'hert kernel, 146

Homogeneity of distance function,
128

Homuogensons Markoff {chain) density
see Fully homogonsous Markoff
{chain) densiby

liomogeneous Markoll process, 124

Homogencous prooess X{A)  [def.
5.5.4], 140-1

Tandependence, stochastie, 79

Tulinitely subdivisible process (or law)
{def. 8.4.1], 69; subordinate [thea-
rem 4.3.1], 2

Joint disteibution funetion, see Dis-
tribution function

K-stationary random (additive set)
function, 160
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Kernel, 1 covariance, 146; Fejer,
non-periodie, 5; Fejer, periodie, 20;
Gaussian, 4; Hilhont, 118; positive-
definite, 144; product, 4; spocial
[formula {1.1.5)], 2-3

Kolmogoroft property, 119

Ly-atomistic mepsire [def. 6.3.2], 135

L fdy-nomm, 3

LM Y-space, 52-3

L {Ty)nom, 3

Ly Q) -norm, 152

Laplace equation [formuls {2.5.1
36

Lebesgue moasurs spaes, T6; finite,
T8; o-fnite, 74 topological, 76;
strietly topological, 78

2

1

Mapping: consistent, T1: completaly
manotone  |def, 4.1.1], 88; com-
Pletely moueotone in soveral vari-

[N

NERAL INDEX

P-ranvergont, 53

F-finite, f1

Plimit, 55

Partinlly ordered vecrar space, S0

Feviodie additive set fanetion, 1§

Poisson wddend ¢®(z), 67

Poisson charactor [ref, 3120008

Poizson sommaiion formula [Lormiatae
(ZA2)and (2473, 31 2

Fotsgon transforon [def. 3.3.10 50

Positive-definite functions Lrlﬁxrg}'e111
908 o 7'\
_ Ji.Z.JJ, a8 *
Positive-dalinite kornel, 6
PN

Probability space, Tl

Produet kernel, 4 '\\

Frojoction, 118 Ny

Projective R NTH; forward, 134

Troper cong NI

Proper ¢ sdwilinator, 45

Tsenddchiracter iz e Ldef, 3,777,
fiy

ables [def. 4.2.27, 80 -ngr" Yo £ §Fsian function [def, 3.3.3],
- . ulihbic F]‘;/dsl v :
Markoff (chain) dcnsit-}r\,'\wfﬁ;dlggg- o\ B @
tnuous, 07 hormagencons, etn',_:.:‘: 'I".%cudu-t-ra-ns[‘orm fdef. 3.2.21 56

97-8: of special kind [dof, 4,5:8)°
100; subordinate [theorem 1, 23, 9%

Markoff process [def, 5.2.%\ 124
horogeneous, et 12&'\{“

Malrix space, 1316-17 \

Maximal family simiply 18 ; sequan-
lially, 119 N\

Measarn space, .(e..]‘aehesgue meagure
spuce §

Modular
172

T‘é@bmn [formula (4,8.15)],
.\;th;}jﬁ{m, 3; Lyl

\E:?,(Q), 153

Cetant, 14; closed, 7, 89; open, X, 80

Open octant X, 89

Orthogonal random {additive
funetion, 161

Qrthonorenal random
function, 161

%

), 85 Lo(Ty), 2,

set)

additive set)

F-closed, 56
Felosure, 56

Radial finction, 5, 87

Random [unction {random adiditive
seb functiom), 137, K -stationact,
160; vrrhiogonal, 161 ; orthonormoal,
161

Randam variable, 77

Sequentially maximal family, 119

Het fanction, see Additive set funelion

Simply maximnl Lamily, 118

Space homogeneous Markoff {chain)
density, 95

Special  kernel | formula {r.1.8)7,
2-3

Bpherical average of . funclion
[formula (1.L.273],

Spherieal  harmonic Mdef,  2.6.17,
3%

Stabla laws [Formuls {4$.3.11)], 93

Stativnary Markofl (rhair) onsity,
sce Time homogencous Markoff
(chain) denaity

Step function [def. 5.5.2], 139
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Stieltjes integral, 140, 142

Stochastie fumily, 119; topological,
118; Muelidean, 136

Siochastie independence, 79

Siochastic process |dell 5.1.47 118;
Euclidesn [theorem 5.4.4], 136

topological {Lebesgue)

meARITe gpace, 76

Birietly

Subdivisible process (or lsw), see
Infinitcly subdivisible process {or
Lawe}

Subordinale Markoft {chain) density
[theorern 4.4.3), 98

Subordinate (infinitcly) subdivisible
process [theorem 4.3.1], 143

Buburdinator, 94; proper, 9%

Summeation formulas involving Bessel
Tunctions, 112

Time homogeneous Markoff (chain}
density, 97
Topological {Lebesgme) measurespaoce,
76
Topological stochastic family, 119
Translation fouction: 7,(x), 7; 77 (n};<\

17 ®

O
Wiener process [del, 6.2.31,\53

Weal convergenes, 16

$

.
Zota kernel [def. 2.%&7; adjuatoed

[def. 2.8.1], 74\>
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